These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 17730244)

  • 21. Extreme Precipitation and Flooding Contribute to Sudden Vegetation Dieback in a Coastal Salt Marsh.
    Stagg CL; Osland MJ; Moon JA; Feher LC; Laurenzano C; Lane TC; Jones WR; Hartley SB
    Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantifying hydrologic controls on local- and landscape-scale indicators of coastal wetland loss.
    Stagg CL; Osland MJ; Moon JA; Hall CT; Feher LC; Jones WR; Couvillion BR; Hartley SB; Vervaeke WC
    Ann Bot; 2020 Feb; 125(2):365-376. PubMed ID: 31532484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated micro-topography boosts growth rates in Salicornia procumbens by amplifying a tidally driven oxygen pump: implications for natural recruitment and restoration.
    Fivash GS; Belzen JV; Temmink RJM; Didderen K; Lengkeek W; Heide TV; Bouma TJ
    Ann Bot; 2020 Feb; 125(2):353-364. PubMed ID: 31433047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversing wetland death from 35,000 cuts: Opportunities to restore Louisiana's dredged canals.
    Turner RE; McClenachan G
    PLoS One; 2018; 13(12):e0207717. PubMed ID: 30550603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discontinuities in soil strength contribute to destabilization of nutrient-enriched creeks.
    Wigand C; Watson EB; Martin R; Johnson DS; Warren RS; Hanson A; Davey E; Johnson R; Deegan L
    Ecosphere; 2018 Aug; 9(8):e02329. PubMed ID: 30505615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong associations between plant genotypes and bacterial communities in a natural salt marsh.
    Zogg GP; Travis SE; Brazeau DA
    Ecol Evol; 2018 May; 8(9):4721-4730. PubMed ID: 29760911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen loss from Spartina alterniflora and its relationship to salt marsh oxygen balance.
    Howes BL; Teal JM
    Oecologia; 1994 May; 97(4):431-438. PubMed ID: 28313730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lacunal allocation and gas transport capacity in the salt marsh grass Spartina alterniflora.
    Arenovski AL; Howes BL
    Oecologia; 1992 Jun; 90(3):316-322. PubMed ID: 28313517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flood tolerance and the distribution of Iva frutescens across New England salt marshes.
    Bertness MD; Wikler K; Chatkupt T
    Oecologia; 1992 Aug; 91(2):171-178. PubMed ID: 28313453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Salt stress limitation of seedling recruitment in a salt marsh plant community.
    Shumway SW; Bertness MD
    Oecologia; 1992 Dec; 92(4):490-497. PubMed ID: 28313219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Waterlogging responses in dune, swale and marsh populations of Spartina patens under field conditions.
    Burdick DM; Mendelssohn IA
    Oecologia; 1987 Dec; 74(3):321-329. PubMed ID: 28312467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can community structure track sea-level rise? Stress and competitive controls in tidal wetlands.
    Schile LM; Callaway JC; Suding KN; Kelly NM
    Ecol Evol; 2017 Feb; 7(4):1276-1285. PubMed ID: 28303196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise.
    Walters DC; Kirwan ML
    Ecol Evol; 2016 May; 6(9):2948-56. PubMed ID: 27069590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term impacts of disturbance on nitrogen-cycling bacteria in a New England salt marsh.
    Bernhard AE; Dwyer C; Idrizi A; Bender G; Zwick R
    Front Microbiol; 2015; 6():46. PubMed ID: 25699033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Species-specific enzymatic tolerance of sulfide toxicity in plant roots.
    Martin NM; Maricle BR
    Plant Physiol Biochem; 2015 Mar; 88():36-41. PubMed ID: 25635761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soil oxidation-reduction in wetlands and its impact on plant functioning.
    Pezeshki SR; DeLaune RD
    Biology (Basel); 2012 Jul; 1(2):196-221. PubMed ID: 24832223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen transport.
    Drew MC; Saglio PH; Pradet A
    Planta; 1985 Jul; 165(1):51-8. PubMed ID: 24240957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seasonal variation of fungal biomass in the sediment of a salt marsh in New Brunswick.
    Mansfield SD; Bärlocher F
    Microb Ecol; 1993 Jul; 26(1):37-45. PubMed ID: 24189987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Archaeal diversity and the prevalence of Crenarchaeota in salt marsh sediments.
    Nelson KA; Moin NS; Bernhard AE
    Appl Environ Microbiol; 2009 Jun; 75(12):4211-5. PubMed ID: 19395565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for Hygrometric Pressurization in the Internal Gas Space of Spartina alterniflora.
    Hwang YH; Morris JT
    Plant Physiol; 1991 May; 96(1):166-71. PubMed ID: 16668146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.