These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17730606)

  • 1. Pygmy stars: first pair.
    Zwicky F
    Science; 1966 Jul; 153(3731):53-4. PubMed ID: 17730606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the faintest stars in a globular star cluster.
    Richer HB; Anderson J; Brewer J; Davis S; Fahlman GG; Hansen BM; Hurley J; Kalirai JS; King IR; Reitzel D; Rich RM; Shara MM; Stetson PB
    Science; 2006 Aug; 313(5789):936-40. PubMed ID: 16917054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survival of a brown dwarf after engulfment by a red giant star.
    Maxted PF; Napiwotzki R; Dobbie PD; Burleigh MR
    Nature; 2006 Aug; 442(7102):543-5. PubMed ID: 16885979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of two young brown dwarfs in an eclipsing binary system.
    Stassun KG; Mathieu RD; Valenti JA
    Nature; 2006 Mar; 440(7082):311-4. PubMed ID: 16541067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. White dwarf stars with carbon atmospheres.
    Dufour P; Liebert J; Fontaine G; Behara N
    Nature; 2007 Nov; 450(7169):522-4. PubMed ID: 18033290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared spectrum of an extremely cool white-dwarf star.
    Hodgkin ST; Oppenheimer BR; Hambly NC; Jameson RF; Smartt SJ; Steele IA
    Nature; 2000 Jan; 403(6765):57-9. PubMed ID: 10638748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A brown dwarf mass donor in an accreting binary.
    Littlefair SP; Dhillon VS; Marsh TR; Gänsicke BT; Southworth J; Watson CA
    Science; 2006 Dec; 314(5805):1578-80. PubMed ID: 17158322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surprising dissimilarities in a newly formed pair of 'identical twin' stars.
    Stassun KG; Mathieu RD; Cargile PA; Aarnio AN; Stempels E; Geller A
    Nature; 2008 Jun; 453(7198):1079-82. PubMed ID: 18563159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stellar motion survey by automation.
    Luyten WJ
    Science; 1974 Jul; 185(4148):351-2. PubMed ID: 17794305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.
    Gilfanov M; Bogdán A
    Nature; 2010 Feb; 463(7283):924-5. PubMed ID: 20164924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Star Formation in W49A: Gravitational Collapse of the Molecular Cloud Core Toward a Ring of Massive Stars.
    Welch WJ; Dreher JW; Jackson JM; Terebey S; Vogel SN
    Science; 1987 Dec; 238(4833):1550-5. PubMed ID: 17784292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnitude Bias of Microlensed Sources toward the Large Magellanic Cloud.
    Zhao H; Graff DS; Guhathakurta P
    Astrophys J; 2000 Mar; 532(1):L37-L40. PubMed ID: 10702127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A binary star fraction of 76 per cent and unusual orbit parameters for the blue stragglers of NGC 188.
    Mathieu RD; Geller AM
    Nature; 2009 Dec; 462(7276):1032-5. PubMed ID: 20033042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limits on the dependence of the fine-structure constant on gravitational potential from white-dwarf spectra.
    Berengut JC; Flambaum VV; Ong A; Webb JK; Barrow JD; Barstow MA; Preval SP; Holberg JB
    Phys Rev Lett; 2013 Jul; 111(1):010801. PubMed ID: 23862989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Searching for Rare Celestial Objects Automatically from Stellar Spectra of the Sloan Digital Sky Survey Data Release Eight].
    Si JM; Luo AL; Wu FZ; Wu YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):834-40. PubMed ID: 26117907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of the progenitor of the type Ia supernova 2007on.
    Voss R; Nelemans G
    Nature; 2008 Feb; 451(7180):802-4. PubMed ID: 18273013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A radio-pulsing white dwarf binary star.
    Marsh TR; Gänsicke BT; Hümmerich S; Hambsch FJ; Bernhard K; Lloyd C; Breedt E; Stanway ER; Steeghs DT; Parsons SG; Toloza O; Schreiber MR; Jonker PG; van Roestel J; Kupfer T; Pala AF; Dhillon VS; Hardy LK; Littlefair SP; Aungwerojwit A; Arjyotha S; Koester D; Bochinski JJ; Haswell CA; Frank P; Wheatley PJ
    Nature; 2016 Sep; 537(7620):374-377. PubMed ID: 27462808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of the first star in the Universe.
    Abel T; Bryan GL; Norman ML
    Science; 2002 Jan; 295(5552):93-8. PubMed ID: 11711636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fossil origin for the magnetic field in A stars and white dwarfs.
    Braithwaite J; Spruit HC
    Nature; 2004 Oct; 431(7010):819-21. PubMed ID: 15483604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation of stars by gravitational collapse rather than competitive accretion.
    Krumholz MR; McKee CF; Klein RI
    Nature; 2005 Nov; 438(7066):332-4. PubMed ID: 16292305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.