These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1773097)

  • 1. The amplitude of circadian oscillations: temperature dependence, latitudinal clines, and the photoperiodic time measurement.
    Pittendrigh CS; Kyner WT; Takamura T
    J Biol Rhythms; 1991; 6(4):299-313. PubMed ID: 1773097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Latitudinal clines in the properties of a circadian pacemaker.
    Pittendrigh CS; Takamura T
    J Biol Rhythms; 1989; 4(2):217-35. PubMed ID: 2519590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis.
    Lankinen P; Forsman P
    J Biol Rhythms; 2006 Feb; 21(1):3-12. PubMed ID: 16461980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Latitudinal variation in eclosion rhythm among strains of Drosophila ananassae.
    Joshi DS; Gore AP
    Indian J Exp Biol; 1999 Jul; 37(7):718-24. PubMed ID: 10522160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of circadian oscillation(s) in the photoperiodic time measurement and the induction of reproductive diapause in a northern Drosophila species.
    Kauranen H; Tyukmaeva V; Hoikkala A
    J Insect Physiol; 2013 Jul; 59(7):662-6. PubMed ID: 23665332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-induced changes in circadian rhythms of body temperature and activity in rats are not caused by pacemaker changes.
    Meerlo P; van den Hoofdakker RH; Koolhaas JM; Daan S
    J Biol Rhythms; 1997 Feb; 12(1):80-92. PubMed ID: 9104692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melatonin rhythm observed throughout a three-cycle bright-light stimulus designed to reset the human circadian pacemaker.
    Shanahan TL; Kronauer RE; Duffy JF; Williams GH; Czeisler CA
    J Biol Rhythms; 1999 Jun; 14(3):237-53. PubMed ID: 10452336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct Physiological Mechanisms Induce Latitudinal and Sexual Differences in the Photoperiodic Induction of Diapause in a Fly.
    Yamaguchi K; Goto SG
    J Biol Rhythms; 2019 Jun; 34(3):293-306. PubMed ID: 30966851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic dissection of the Drosophila circadian system.
    Konopka RJ
    Fed Proc; 1979 Nov; 38(12):2602-5. PubMed ID: 574095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Drosophila circadian phase response curve to light: Conservation across seasonally relevant photoperiods and anchorage to sunset.
    Dollish HK; Kaladchibachi S; Negelspach DC; Fernandez FX
    Physiol Behav; 2022 Mar; 245():113691. PubMed ID: 34958825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplitude of circadian oscillations entrained by 24-h light-dark cycles.
    Kurosawa G; Goldbeter A
    J Theor Biol; 2006 Sep; 242(2):478-88. PubMed ID: 16678857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is a critical interval of the circadian pacemaker at dusk responsive to light and melatonin responsible for the timing of estrus in the Romney Marsh ewe?
    Matthews CD; Guerin MV; Napier AJ
    J Biol Rhythms; 1995 Dec; 10(4):308-18. PubMed ID: 8639939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The coincidence of light and melatonin with a specific phase of the circadian pacemaker is important for the timing of seasonal breeding in the ewe.
    Guerin MV; Deed JR; Matthews CD
    J Biol Rhythms; 2000 Dec; 15(6):514-23. PubMed ID: 11106068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A latitudinal cline in the efficacy of endogenous signals: evidence derived from retinal cone contraction in fish.
    Yammouni R; Bozzano A; Douglas RH
    J Exp Biol; 2011 Feb; 214(Pt 3):501-8. PubMed ID: 21228209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian effects of light no brighter than moonlight.
    Evans JA; Elliott JA; Gorman MR
    J Biol Rhythms; 2007 Aug; 22(4):356-67. PubMed ID: 17660452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-noise-induced suprathreshold circadian oscillations and coherent resonance in Drosophila.
    Yi M; Jia Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):012902. PubMed ID: 16090019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic correlation between circadian eclosion rhythm and photoperiodic diapause in Drosophila littoralis.
    Lankinen P
    J Biol Rhythms; 1986; 1(2):101-18. PubMed ID: 2979577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light pulses induce "singular" behavior and shorten the period of the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas.
    Johnson CH; Kondo T
    J Biol Rhythms; 1992; 7(4):313-27. PubMed ID: 1286203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplitude model for the effects of mutations and temperature on period and phase resetting of the Neurospora circadian oscillator.
    Lakin-Thomas PL; Brody S; Coté GG
    J Biol Rhythms; 1991; 6(4):281-97. PubMed ID: 1837742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altitudinal variation in the circadian rhythm of oviposition in Drosophila ananassae.
    Khare PV; Satralkar MK; Vanlalnghaka C; Keny VL; Kasture MS; Shivagaje AJ; Barnabas RJ; Joshi DS
    Chronobiol Int; 2005; 22(1):45-57. PubMed ID: 15865320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.