These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17732741)

  • 1. A putative role of the xanthophyll, zeaxanthin, in blue light photoreception of corn coleoptiles.
    Quiñlones MA; Zeiger E
    Science; 1994 Apr; 264(5158):558-61. PubMed ID: 17732741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that zeaxanthin is not the photoreceptor for phototropism in maize coleoptiles.
    Palmer JM; Warpeha KM; Briggs WR
    Plant Physiol; 1996 Apr; 110(4):1323-8. PubMed ID: 11536774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hypocotyl chloroplast plays a role in phototropic bending of Arabidopsis seedlings: developmental and genetic evidence.
    Jin X; Zhu J; Zeiger E
    J Exp Bot; 2001 Jan; 52(354):91-7. PubMed ID: 11181717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct involvement of hydrogen peroxide in curvature of wheat coleoptile in blue-light-treated and dark-grown coleoptiles.
    Chandrakuntal K; Kumar PG; Laloraya M; Laloraya MM
    Biochem Biophys Res Commun; 2004 Jul; 319(4):1190-6. PubMed ID: 15194492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism.
    Quiñones MA; Lu Z; Zeiger E
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):2224-8. PubMed ID: 11607640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated retinal zeaxanthin and prevention of light-induced photoreceptor cell death in quail.
    Thomson LR; Toyoda Y; Langner A; Delori FC; Garnett KM; Craft N; Nichols CR; Cheng KM; Dorey CK
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3538-49. PubMed ID: 12407166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf orientation and the response of the xanthophyll cycle to incident light.
    Adams WW; Volk M; Hoehn A; Demmig-Adams B
    Oecologia; 1992 Jun; 90(3):404-410. PubMed ID: 28313528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stomata from npq1, a zeaxanthin-less Arabidopsis mutant, lack a specific response to blue light.
    Frechilla S; Zhu J; Talbott LD; Zeiger E
    Plant Cell Physiol; 1999 Sep; 40(9):949-54. PubMed ID: 10588066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-induced and light-induced isomerization of the xanthophyll pigment zeaxanthin.
    Milanowska J; Gruszecki WI
    J Photochem Photobiol B; 2005 Sep; 80(3):178-86. PubMed ID: 15967674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of exogenous phytohormones on plastid tRNA modifications in ragi coleoptiles.
    Narkunaraja S; Antony K; Jayabaskaran C
    Indian J Biochem Biophys; 1997 Dec; 34(6):494-500. PubMed ID: 9594430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional properties of the coleoptile chloroplast: Photosynthesis and photosensory transduction.
    Zhu J; Zeiger R; Zeiger E
    Photosynth Res; 1995 May; 44(1-2):207-19. PubMed ID: 24307039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carotenoid-dependent oligomerization of the major chlorophyll a/b light harvesting complex of photosystem II of plants.
    Ruban AV; Phillip D; Young AJ; Horton P
    Biochemistry; 1997 Jun; 36(25):7855-9. PubMed ID: 9201929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching in Arabidopsis thaliana.
    Johnson MP; Davison PA; Ruban AV; Horton P
    FEBS Lett; 2008 Jan; 582(2):262-6. PubMed ID: 18083127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis.
    Davison PA; Hunter CN; Horton P
    Nature; 2002 Jul; 418(6894):203-6. PubMed ID: 12110893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of mutants in the search for the photoreceptor for phototropism in higher plants.
    Briggs WR; Liscum E
    Plant Cell Environ; 1997; 20(6):768-72. PubMed ID: 11542766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of neoxanthin and lutein epoxide cycle in parasitic Cuscuta species.
    Kruk J; Szymańska R
    Acta Biochim Pol; 2008; 55(1):183-90. PubMed ID: 18217105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Metabolism of carotenoids during dark and photooxidative degradation in Anabaena variabilis].
    Pakhlavuni IK
    Mikrobiologiia; 1977; 46(6):981-7. PubMed ID: 414056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytochrome is required for the occurrence of time-dependent phototropism in maize coleoptiles.
    Liu YJ; Iino M
    Plant Cell Environ; 1996 Dec; 19(12):1379-88. PubMed ID: 11539322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in the capacity for radiationless energy dissipation in the photochemical apparatus of green and blue-green algal lichens associated with differences in carotenoid composition.
    Demmig-Adams B; Adams WW; Czygan FC; Schreiber U; Lange OL
    Planta; 1990 Mar; 180(4):582-9. PubMed ID: 24202104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin.
    Kim SR; Nakanishi K; Itagaki Y; Sparrow JR
    Exp Eye Res; 2006 May; 82(5):828-39. PubMed ID: 16364293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.