BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 1773771)

  • 1. Reinforcement of motor evoked potentials in patients with spinal cord injury.
    Hayes KC; Allatt RD; Wolfe DL; Kasai T; Hsieh J
    Electroencephalogr Clin Neurophysiol Suppl; 1991; 43():312-29. PubMed ID: 1773771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement of subliminal flexion reflexes by transcranial magnetic stimulation of motor cortex in subjects with spinal cord injury.
    Hayes KC; Allatt RD; Wolfe DL; Kasai T; Hsieh J
    Electroencephalogr Clin Neurophysiol; 1992 Apr; 85(2):102-9. PubMed ID: 1373362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditioning lower limb H-reflexes by transcranial magnetic stimulation of motor cortex reveals preserved innervation in SCI patients.
    Wolfe DL; Hayes KC; Potter PJ; Delaney GA
    J Neurotrauma; 1996 Jun; 13(6):281-91. PubMed ID: 8835796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor evoked potentials (MEP) and evoked pressure curves (EPC) from the urethral compressive musculature (UCM) by functional magnetic stimulation in healthy volunteers and patients with neurogenic incontinence.
    Schmid DM; Curt A; Hauri D; Schurch B
    Neurourol Urodyn; 2005; 24(2):117-27. PubMed ID: 15616965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [MEPs by transcranical magnetic stimulation in experimental acute spinal cord injury].
    Kawakita H; Kameyama O; Ogawa R; Tsubura A
    Nihon Seikeigeka Gakkai Zasshi; 1995 Dec; 69(12):1268-77. PubMed ID: 8586912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Afferent conditioning of motor evoked potentials following transcranial magnetic stimulation of motor cortex in normal subjects.
    Kasai T; Hayes KC; Wolfe DL; Allatt RD
    Electroencephalogr Clin Neurophysiol; 1992 Apr; 85(2):95-101. PubMed ID: 1373371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans.
    Hortobágyi T; Taylor JL; Petersen NT; Russell G; Gandevia SC
    J Neurophysiol; 2003 Oct; 90(4):2451-9. PubMed ID: 14534271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials?
    Hornby TG; Rymer WZ; Benz EN; Schmit BD
    J Neurophysiol; 2003 Jan; 89(1):416-26. PubMed ID: 12522190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central cord syndrome of cervical spinal cord injury: widespread changes in muscle recruitment studied by voluntary contractions and transcranial magnetic stimulation.
    Alexeeva N; Broton JG; Suys S; Calancie B
    Exp Neurol; 1997 Dec; 148(2):399-406. PubMed ID: 9417819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.
    Roy FD; Yang JF; Gorassini MA
    J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between short train, monophasic and biphasic repetitive transcranial magnetic stimulation (rTMS) of the human motor cortex.
    Arai N; Okabe S; Furubayashi T; Terao Y; Yuasa K; Ugawa Y
    Clin Neurophysiol; 2005 Mar; 116(3):605-13. PubMed ID: 15721074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recording of spared motor evoked potentials and its augmentation by 4-aminopyridine in chronic spinal cord-injured rats.
    Yu K; Li J; Rong W; Jia L; Yuan W; Ye X; Shi Z; Dai B
    Chin Med J (Engl); 2001 Feb; 114(2):155-61. PubMed ID: 11780197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repetitive magnetic stimulation of cortical motor areas in Parkinson's disease: implications for the pathophysiology of cortical function.
    Gilio F; Currà A; Inghilleri M; Lorenzano C; Manfredi M; Berardelli A
    Mov Disord; 2002 May; 17(3):467-73. PubMed ID: 12112192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans.
    Di Lazzaro V; Pilato F; Oliviero A; Dileone M; Saturno E; Mazzone P; Insola A; Profice P; Ranieri F; Capone F; Tonali PA; Rothwell JC
    J Neurophysiol; 2006 Oct; 96(4):1765-71. PubMed ID: 16760345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitation of motor evoked potentials: timing of Jendrassik maneuver effects.
    Péréon Y; Genet R; Guihéneuc P
    Muscle Nerve; 1995 Dec; 18(12):1427-32. PubMed ID: 7477066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement of motor evoked potentials by remote muscle contraction.
    Kawakita H; Kameyama O; Ogawa R; Hayes KC; Wolfe DL; Allatt RD
    J Electromyogr Kinesiol; 1991 Jun; 1(2):96-106. PubMed ID: 20870499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of stimulus intensity and voluntary contraction on corticospinal potentials following transcranial magnetic stimulation.
    Kaneko K; Kawai S; Fuchigami Y; Shiraishi G; Ito T
    J Neurol Sci; 1996 Jul; 139(1):131-6. PubMed ID: 8836984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of early motor and sensory evoked potentials in cervical spinal cord injury.
    Chéliout-Héraut F; Loubert G; Masri-Zada T; Aubrun F; Pasteyer J
    Neurophysiol Clin; 1998 Feb; 28(1):39-55. PubMed ID: 9562998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Clinical application of TMS-MEP in spinal cord injury].
    Li F; Chen Y; Wan Y; Chen L; He A
    Zhonghua Wai Ke Za Zhi; 1998 Dec; 36(12):714-6. PubMed ID: 11825506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Electrophysiological study of a case of clinically diagnosed corticobasal degeneration with rhythmic myoclonus].
    Matsunaga K; Uozumi T; Murai Y; Tsuji S
    Rinsho Shinkeigaku; 1997 Nov; 37(11):1001-5. PubMed ID: 9503971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.