These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 1773812)

  • 1. Muscle metabolism during 30, 60 and 90 s of maximal cycling on an air-braked ergometer.
    Withers RT; Sherman WM; Clark DG; Esselbach PC; Nolan SR; Mackay MH; Brinkman M
    Eur J Appl Physiol Occup Physiol; 1991; 63(5):354-62. PubMed ID: 1773812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen deficits incurred during 45, 60, 75 and 90-s maximal cycling on an air-braked ergometer.
    Withers RT; Van der Ploeg G; Finn JP
    Eur J Appl Physiol Occup Physiol; 1993; 67(2):185-91. PubMed ID: 8223527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VO2max responses in separate and combined arm and leg air-braked ergometer exercise.
    Nagle FJ; Richie JP; Giese MD
    Med Sci Sports Exerc; 1984 Dec; 16(6):563-6. PubMed ID: 6513773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists.
    Woolford SM; Withers RT; Craig NP; Bourdon PC; Stanef T; McKenzie I
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):285-91. PubMed ID: 10483797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.
    Majerczak J; Szkutnik Z; Karasinski J; Duda K; Kolodziejski L; Zoladz JA
    J Physiol Pharmacol; 2006 Jun; 57(2):199-215. PubMed ID: 16845226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human muscle metabolism during intermittent maximal exercise.
    Gaitanos GC; Williams C; Boobis LH; Brooks S
    J Appl Physiol (1985); 1993 Aug; 75(2):712-9. PubMed ID: 8226473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling.
    Medbø JI; Tabata I
    J Appl Physiol (1985); 1993 Oct; 75(4):1654-60. PubMed ID: 8282617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical performance and muscle metabolism during beta-adrenergic blockade in man.
    Kaiser P
    Acta Physiol Scand Suppl; 1984; 536():1-53. PubMed ID: 6151777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological and technological variability of three anaerobic ergometer tests.
    Coggan AR; Costill DL
    Int J Sports Med; 1984 Jun; 5(3):142-5. PubMed ID: 6746177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen uptake-work rate relationship during two consecutive ramp exercise tests.
    Jones AM; Carter H
    Int J Sports Med; 2004 Aug; 25(6):415-20. PubMed ID: 15346228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower Limb Sports Compression Garments Improve Muscle Blood Flow and Exercise Performance During Repeated-Sprint Cycling.
    Broatch JR; Bishop DJ; Halson S
    Int J Sports Physiol Perform; 2018 Aug; 13(7):882-890. PubMed ID: 29252067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle metabolism, blood lactate and oxygen uptake in steady state exercise at aerobic and anaerobic thresholds.
    Rusko H; Luhtanen P; Rahkila P; Viitasalo J; Rehunen S; Härkönen M
    Eur J Appl Physiol Occup Physiol; 1986; 55(2):181-6. PubMed ID: 3699005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of anaerobic and aerobic energy supplies during sustained high intensity exercise on cycle ergometer.
    Yamamoto M; Kanehisa H
    Eur J Appl Physiol Occup Physiol; 1995; 71(4):320-5. PubMed ID: 8549574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic fitness influences the response of maximal oxygen uptake and lactate threshold in acute hypobaric hypoxia.
    Koistinen P; Takala T; Martikkala V; Leppäluoto J
    Int J Sports Med; 1995 Feb; 16(2):78-81. PubMed ID: 7751080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiorespiratory and metabolic costs of continuous and intermittent exercise in man.
    Edwards RH; Ekelund LG; Harris RC; Hesser CM; Hultman E; Melcher A; Wigertz O
    J Physiol; 1973 Oct; 234(2):481-97. PubMed ID: 4767062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinctive effects of three different modes of exercise on oxygen uptake, heart rate and blood lactate and pyruvate.
    Tanaka H; Fukumoto S; Osaka Y; Ogawa S; Yamaguchi H; Miyamoto H
    Int J Sports Med; 1991 Oct; 12(5):433-8. PubMed ID: 1752707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrelations between power, force production and energy metabolism in maximal leg work using a modified rowing ergometer.
    Peltonen J; Rusko H
    J Sports Sci; 1993 Jun; 11(3):233-40. PubMed ID: 8336355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men.
    Ziemann E; Grzywacz T; Łuszczyk M; Laskowski R; Olek RA; Gibson AL
    J Strength Cond Res; 2011 Apr; 25(4):1104-12. PubMed ID: 20661160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of test duration and event specificity on maximal accumulated oxygen deficit of high performance track cyclists.
    Craig NP; Norton KI; Conyers RA; Woolford SM; Bourdon PC; Stanef T; Walsh CB
    Int J Sports Med; 1995 Nov; 16(8):534-40. PubMed ID: 8776208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity of test duration when assessing the anaerobic lactacid capacity of high-performance track cyclists.
    Craig NP; Pyke FS; Norton KI
    Int J Sports Med; 1989 Aug; 10(4):237-42. PubMed ID: 2691409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.