These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 17738833)

  • 1. Fly ash-derived strontium as an index to monitor deposition from coal-fired power plants.
    Straughan IR; Elseewi AA; Page AL; Kaplan IR; Hurst RW; Davis TE
    Science; 1981 Jun; 212(4500):1267-9. PubMed ID: 17738833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review.
    Papastefanou C
    J Environ Radioact; 2010 Mar; 101(3):191-200. PubMed ID: 20005612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion.
    Reddy MS; Basha S; Joshi HV; Jha B
    J Hazard Mater; 2005 Aug; 123(1-3):242-9. PubMed ID: 15916850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of radon exhalation rate and estimation of radiation doses in coal and fly ash samples.
    Mahur AK; Kumar R; Mishra M; Sengupta D; Prasad R
    Appl Radiat Isot; 2008 Mar; 66(3):401-6. PubMed ID: 18063375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants.
    Karangelos DJ; Petropoulos NP; Anagnostakis MJ; Hinis EP; Simopoulos SE
    J Environ Radioact; 2004; 77(3):233-46. PubMed ID: 15381319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenicity and cytotoxicity of coal fly ash from fluidized-bed and conventional combustion.
    Mumford JL; Lewtas J
    J Toxicol Environ Health; 1982; 10(4-5):565-86. PubMed ID: 6761446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reclamation and revegetation of fly ash disposal sites - Challenges and research needs.
    Haynes RJ
    J Environ Manage; 2009 Jan; 90(1):43-53. PubMed ID: 18706753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of occupational radiation exposures to NORM at an Irish peat-fired power station and potential use of peat fly ash by the construction industry.
    Organo C; Lee EM; Menezes G; Finch EC
    J Radiol Prot; 2005 Dec; 25(4):461-74. PubMed ID: 16340073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speciation of nickel in Canadian subbituminous and bituminous feed coals, and their ash by-products.
    Goodarzi F; Huggins F
    J Environ Monit; 2004 Oct; 6(10):787-91. PubMed ID: 15480491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury in coal ash and its fate in the Indian subcontinent: A synoptic review.
    Mukherjee AB; Zevenhoven R
    Sci Total Environ; 2006 Sep; 368(1):384-92. PubMed ID: 16183102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.
    Hasani F; Shala F; Xhixha G; Xhixha MK; Hodolli G; Kadiri S; Bylyku E; Cfarku F
    J Environ Radioact; 2014 Dec; 138():156-61. PubMed ID: 25233215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and elemental accumulation by canola on soil amended with coal fly ash.
    Yunusa IA; Manoharan V; DeSilva DL; Eamus D; Murray BR; Nissanka SP
    J Environ Qual; 2008; 37(3):1263-70. PubMed ID: 18453446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fly ash effect on improving soil properties and rice productivity in Korean paddy soils.
    Lee H; Ha HS; Lee CH; Lee YB; Kim PJ
    Bioresour Technol; 2006 Sep; 97(13):1490-7. PubMed ID: 16153826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fly ash as a soil ameliorant for improving crop production--a review.
    Jala S; Goyal D
    Bioresour Technol; 2006 Jun; 97(9):1136-47. PubMed ID: 16551534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of fly-ash on soil and plant responses.
    Gupta DK; Rai UN; Tripathi RD; Inouhe M
    J Plant Res; 2002 Dec; 115(6):401-9. PubMed ID: 12579443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation and Integration of Geochemical Indicators for Detecting Trace Levels of Coal Fly Ash in Soils.
    Wang Z; Coyte RM; Cowan EA; Stapleton HM; Dwyer GS; Vengosh A
    Environ Sci Technol; 2021 Aug; 55(15):10387-10397. PubMed ID: 34282893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An appraisal of the potential use of fly ash for reclaiming coal mine spoil.
    Ram LC; Masto RE
    J Environ Manage; 2010; 91(3):603-17. PubMed ID: 19914766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes.
    Yunusa IA; Burchett MD; Manoharan V; Desilva DL; Eamus D; Skilbeck CG
    J Environ Qual; 2009; 38(4):1466-72. PubMed ID: 19465722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of naturally-occurring radionuclides in coal combustion fly ash, gypsum, and scrubber residue samples.
    Roper AR; Stabin MG; Delapp RC; Kosson DS
    Health Phys; 2013 Mar; 104(3):264-9. PubMed ID: 23361421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals.
    Goodarzi F
    J Environ Monit; 2004 Oct; 6(10):792-8. PubMed ID: 15480492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.