BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17739624)

  • 1. A solid sulfur cathode for aqueous batteries.
    Peramunage D; Licht S
    Science; 1993 Aug; 261(5124):1029-32. PubMed ID: 17739624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries.
    Yu X; Manthiram A
    J Phys Chem Lett; 2014 Jun; 5(11):1943-7. PubMed ID: 26273877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smaller sulfur molecules promise better lithium-sulfur batteries.
    Xin S; Gu L; Zhao NH; Yin YX; Zhou LJ; Guo YG; Wan LJ
    J Am Chem Soc; 2012 Nov; 134(45):18510-3. PubMed ID: 23101502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium-sulfur batteries: electrochemistry, materials, and prospects.
    Yin YX; Xin S; Guo YG; Wan LJ
    Angew Chem Int Ed Engl; 2013 Dec; 52(50):13186-200. PubMed ID: 24243546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New approaches for high energy density lithium-sulfur battery cathodes.
    Evers S; Nazar LF
    Acc Chem Res; 2013 May; 46(5):1135-43. PubMed ID: 23054430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na2S-carbon nanotube fabric electrodes for room-temperature sodium-sulfur batteries.
    Yu X; Manthiram A
    Chemistry; 2015 Mar; 21(11):4233-7. PubMed ID: 25640023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous cathode for next-generation alkali-ion batteries.
    Lu Y; Goodenough JB; Kim Y
    J Am Chem Soc; 2011 Apr; 133(15):5756-9. PubMed ID: 21443190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium-sulfur battery cathode enabled by lithium-nitrile interaction.
    Guo J; Yang Z; Yu Y; Abruña HD; Archer LA
    J Am Chem Soc; 2013 Jan; 135(2):763-7. PubMed ID: 23234561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polysulfide chemistry in sodium-sulfur batteries and related systems--a computational study by G3X(MP2) and PCM calculations.
    Steudel R; Steudel Y
    Chemistry; 2013 Feb; 19(9):3162-76. PubMed ID: 23325664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance.
    Xu X; Zhou D; Qin X; Lin K; Kang F; Li B; Shanmukaraj D; Rojo T; Armand M; Wang G
    Nat Commun; 2018 Sep; 9(1):3870. PubMed ID: 30250202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prelithiated silicon nanowires as an anode for lithium ion batteries.
    Liu N; Hu L; McDowell MT; Jackson A; Cui Y
    ACS Nano; 2011 Aug; 5(8):6487-93. PubMed ID: 21711012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor.
    Maekawa H; Matsuo M; Takamura H; Ando M; Noda Y; Karahashi T; Orimo S
    J Am Chem Soc; 2009 Jan; 131(3):894-5. PubMed ID: 19119813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of biologically produced sulfur on gas absorption in a biotechnological hydrogen sulfide removal process.
    Kleinjan WE; Lammers JN; de Keizer A; Janssen AJ
    Biotechnol Bioeng; 2006 Jul; 94(4):633-44. PubMed ID: 16514676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Grown S Nanosheets on Cu Foam: An Ultrahigh Electroactive Cathode for Room-Temperature Na-S Batteries.
    Zhang BW; Liu YD; Wang YX; Zhang L; Chen MZ; Lai WH; Chou SL; Liu HK; Dou SX
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24446-24450. PubMed ID: 28699731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
    Li H; Wang Y; Na H; Liu H; Zhou H
    J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsolvation of thiosulfuric acid and its tautomeric anions [HSSO(3)](-) and [SSO(2)(OH)](-) studied by B3LYP-PCM and G3X(MP2) calculations.
    Steudel R; Steudel Y
    J Phys Chem A; 2009 Sep; 113(36):9920-33. PubMed ID: 19685866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-Principles Characterization and Experimental Validation of the Solid-Solid Interface in a Novel Organosulfur Cathode for the Li-S Battery.
    Bonakala S; Pathak AD; Deyko A; Christova C; Rudra I; Verbist G
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18101-18109. PubMed ID: 32200621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial Discharge Behavior of an Ultra High Loading 3D Sulfur Cathode for a Room-Temperature Na/S Battery.
    Kim I; Kim C; Kim H; Kim KW; Ahn JH; Ahn HJ
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6524-6527. PubMed ID: 29677826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.