These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 177401)
1. Growth rate modulation of four aminoacyl-transfer ribonucleic acid synthetases in enteric bacteria. McKeever WG; Neidhardt FC J Bacteriol; 1976 May; 126(2):634-45. PubMed ID: 177401 [TBL] [Abstract][Full Text] [Related]
2. Metabolic regulation of the arginyl and valyl transfer ribonucleic acid synthetases in bacteria. Parker J; Flashner M; Mckeever WG; Neidhardt FC J Biol Chem; 1974 Feb; 249(4):1044-53. PubMed ID: 4592258 [No Abstract] [Full Text] [Related]
3. Regulation of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli. McGinnis E; Williams LS J Bacteriol; 1971 Oct; 108(1):254-62. PubMed ID: 4941558 [TBL] [Abstract][Full Text] [Related]
4. Control of arginine biosynthesis in Escherichia coli: role of arginyl-transfer ribonucleic acid synthetase in repression. Williams LS J Bacteriol; 1973 Mar; 113(3):1419-32. PubMed ID: 4570785 [TBL] [Abstract][Full Text] [Related]
5. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate. Jakubowski H Biochim Biophys Acta; 1978 Dec; 521(2):584-96. PubMed ID: 32907 [TBL] [Abstract][Full Text] [Related]
6. Derepressed levels of glutamate synthase and glutamine synthetase in Escherichia coli mutants altered in glutamyl-transfer ribonucleic acid synthetase. Lapointe J; Delcuve G; Duplain L J Bacteriol; 1975 Sep; 123(3):843-50. PubMed ID: 239924 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a cold-sensitive hisW mutant of Salmonella typhimurium. Brenchley JE; Ingraham JL J Bacteriol; 1973 May; 114(2):528-36. PubMed ID: 4350342 [TBL] [Abstract][Full Text] [Related]
8. Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli. Neidhardt FC; Bloch PL; Pedersen S; Reeh S J Bacteriol; 1977 Jan; 129(1):378-87. PubMed ID: 318645 [TBL] [Abstract][Full Text] [Related]
9. Regulation of the biosynthesis of aminoacyl-transfer ribonucleic acid synthetases and of transfer ribonucleic acid in Escherichia coli. V. Mutants with increased levels of valyl-transfer ribonucleic acid synthetase. Baer M; Low KB; Söll D J Bacteriol; 1979 Jul; 139(1):165-75. PubMed ID: 378953 [TBL] [Abstract][Full Text] [Related]
10. Control of arginine biosynthesis in Escherichia coli: characterization of arginyl-transfer ribonucleic acid synthetase mutants. Williams AL; Williams LS J Bacteriol; 1973 Mar; 113(3):1433-41. PubMed ID: 4570786 [TBL] [Abstract][Full Text] [Related]
11. Regulation of synthesis of the branched-chain amino acids and cognate aminoacyl-transfer ribonucleic acid synthetases of Escherichia coli: a common regulatory element. Jackson J; Williams LS; Umbarger HE J Bacteriol; 1974 Dec; 120(3):1380-6. PubMed ID: 4612020 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and activities of branched-chain aminoacyl-tRNA synthetases in threonine deaminase mutants of Escherichia coli. Williams AL; Whitfield SM; Williams LS J Bacteriol; 1978 Apr; 134(1):92-9. PubMed ID: 348689 [TBL] [Abstract][Full Text] [Related]
13. Unusual valyl-transfer ribonucleic acid synthetase mutant of Escherichia coli. Anderson JJ; Neidhardt FC J Bacteriol; 1972 Jan; 109(1):307-14. PubMed ID: 4550669 [TBL] [Abstract][Full Text] [Related]
14. Effect of cyclopentaneglycine on metabolism in Salmonella typhimurium. O'Neill JP; Freundlich M J Bacteriol; 1972 Aug; 111(2):510-5. PubMed ID: 4559733 [TBL] [Abstract][Full Text] [Related]
15. Control of arginine biosynthesis in Escherichia coli: inhibition of arginyl-transfer ribonucleic acid synthetase activity. Williams AL; Yem DW; McGinnis E; Williams LS J Bacteriol; 1973 Jul; 115(1):228-34. PubMed ID: 4577743 [TBL] [Abstract][Full Text] [Related]
16. Evidence that the majority of leucine transfer ribonucleic acid is not involved in repression in Salmonella typhimurium. Freundlich M; Trela J; Peng W J Bacteriol; 1971 Nov; 108(2):951-3. PubMed ID: 4942773 [TBL] [Abstract][Full Text] [Related]
17. Enhanced level and metabolic regulation of methionyl-transfer ribonucleic acid synthetase in different strains of Escherichia coli K-12. Cassio D; Mathien Y; Waller JP J Bacteriol; 1975 Aug; 123(2):580-8. PubMed ID: 1097418 [TBL] [Abstract][Full Text] [Related]
18. Effect of T4 modification of host valyl-tRNA synthetase on enzyme action in vivo. Comer MM; Neidhardt FC Virology; 1975 Oct; 67(2):395-403. PubMed ID: 1103443 [No Abstract] [Full Text] [Related]
19. Role of histidine transfer ribonucleic acid in regulation of synthesis of histidyl-transfer ribonucleic acid synthetase of Salmonella typhimurium. McGinnis E; Williams LS J Bacteriol; 1972 Feb; 109(2):505-11. PubMed ID: 4333605 [TBL] [Abstract][Full Text] [Related]
20. Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases. Low B; Gates F; Goldstein T; Söll D J Bacteriol; 1971 Nov; 108(2):742-50. PubMed ID: 4942762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]