These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Regulation of alkane oxidation in Pseudomonas putida. Grund A; Shapiro J; Fennewald M; Bacha P; Leahy J; Markbreiter K; Nieder M; Toepfer M J Bacteriol; 1975 Aug; 123(2):546-56. PubMed ID: 1150626 [TBL] [Abstract][Full Text] [Related]
3. Fractionation of inducible alkane hydroxylase activity in Pseudomonas putida and characterization of hydroxylase-negative plasmid mutations. Benson S; Fennewald M; Shapiro J; Huettner C J Bacteriol; 1977 Nov; 132(2):614-21. PubMed ID: 410794 [TBL] [Abstract][Full Text] [Related]
4. N-Alkane oxidation enzymes of a pseudomonad. Parekh VR; Traxler RW; Sobek JM Appl Environ Microbiol; 1977 Apr; 33(4):881-4. PubMed ID: 869535 [TBL] [Abstract][Full Text] [Related]
5. Genetic regulation of octane dissimilation plasmid in Pseudomonas. Chakrabarty AM; Chou G; Gunsalus IC Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1137-40. PubMed ID: 4515610 [TBL] [Abstract][Full Text] [Related]
6. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. Eggink G; Lageveen RG; Altenburg B; Witholt B J Biol Chem; 1987 Dec; 262(36):17712-8. PubMed ID: 2826430 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. Worsey MJ; Williams PA J Bacteriol; 1975 Oct; 124(1):7-13. PubMed ID: 1176436 [TBL] [Abstract][Full Text] [Related]
8. Regulatory mutations of the Pseudomonas plasmid alk regulon. Fennewald M; Shapiro J J Bacteriol; 1977 Nov; 132(2):622-7. PubMed ID: 410795 [TBL] [Abstract][Full Text] [Related]
9. Fusion and compatibility of camphor and octane plasmids in Pseudomonas. Chou GI; Katz D; Gunsalus IC Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2675-8. PubMed ID: 4527812 [TBL] [Abstract][Full Text] [Related]
10. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids. Nieder M; Shapiro J J Bacteriol; 1975 Apr; 122(1):93-8. PubMed ID: 804473 [TBL] [Abstract][Full Text] [Related]
11. [Regulation and properties of a particular acceptor-dependent alcohol dehydrogenase of Pseudomonas putida during growth on n-alkanes]. Tauchert H; Grunow M; Aurich H Z Allg Mikrobiol; 1978; 18(9):675-80. PubMed ID: 216166 [No Abstract] [Full Text] [Related]
12. Transposition of a beta-lactamase locus from RP1 into Pseudomonas putida degradative plasmids. Benedik M; Fennewald M; Shapiro J J Bacteriol; 1977 Feb; 129(2):809-14. PubMed ID: 584205 [TBL] [Abstract][Full Text] [Related]
13. Induction of alkane hydroxylase proteins by unoxidized alkane in Pseudomonas putida. Benson S; Shapiro J J Bacteriol; 1975 Aug; 123(2):759-60. PubMed ID: 1150630 [TBL] [Abstract][Full Text] [Related]
14. Dissociation of a degradative plasmid aggregate in Pseudomonas. Chakrabarty AM J Bacteriol; 1974 Jun; 118(3):815-20. PubMed ID: 4829926 [TBL] [Abstract][Full Text] [Related]
15. Dissociation and interaction of individual components of a degradative plasmid aggregate in Pseudomonas. Chakrabarty AM; Friello DA Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3410-4. PubMed ID: 4530312 [TBL] [Abstract][Full Text] [Related]
17. Regulation of enzymes of the 3,5-xylenol-degradative pathway in Pseudomonas putida: evidence for a plasmid. Hopper DJ; Kemp PD J Bacteriol; 1980 Apr; 142(1):21-6. PubMed ID: 6989805 [TBL] [Abstract][Full Text] [Related]
18. Purification and characterisation of TOL plasmid-encoded benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase of Pseudomonas putida. Shaw JP; Harayama S Eur J Biochem; 1990 Aug; 191(3):705-14. PubMed ID: 2202600 [TBL] [Abstract][Full Text] [Related]
19. Isolation of a mutant TOL plasmid with increased activity and transmissibility from Pseudomonas putida (arvilla) mt-2. Nakazawa T; Yokota T J Bacteriol; 1977 Jan; 129(1):39-46. PubMed ID: 830645 [TBL] [Abstract][Full Text] [Related]
20. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants. Staijen IE; Marcionelli R; Witholt B J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]