BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 177415)

  • 1. Chromium(III)-adenosine triphosphate as a paramagnetic probe to determine intersubstrate distances on pyruvate kinase. Detection of an active enzyme-metal-ATP-metal complex.
    Gupta RK; Fung CH; Mildvan AS
    J Biol Chem; 1976 Apr; 251(8):2421-30. PubMed ID: 177415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of ATP binding sites of sheep kidney medulla (Na+ + K+)--ATPase using CrATP.
    Grisham CM
    J Inorg Biochem; 1981 Feb; 14(1):45-57. PubMed ID: 6260898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual divalent cation requirement for activation of pyruvate kinase; essential roles of both enzyme- and nucleotide-bound metal ions.
    Gupta RK; Oesterling RM
    Biochemistry; 1976 Jun; 15(13):2881-7. PubMed ID: 7293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance studies of the spatial arrangement of glucose-6-phosphate and chromium (III)-adenosine diphosphate at the catalytic site of hexokinase.
    Petersen RL; Gupta BK
    Biophys J; 1979 Jul; 27(1):1-14. PubMed ID: 233578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear magnetic relaxation studies of the conformation of adenosine 5'-triphosphate on pyruvate kinase from rabbit muscle.
    Sloan DL; Mildvan AS
    J Biol Chem; 1976 Apr; 251(8):2412-20. PubMed ID: 177414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium-7 nuclear magnetic resonance, water proton nuclear magnetic resonance, and gadolinium electron paramagnetic resonance studies of the sarcoplasmic reticulum calcium ion transport adenosine triphosphatase.
    Stephens EM; Grisham CM
    Biochemistry; 1979 Oct; 18(22):4876-85. PubMed ID: 228703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance studies of the interaction of Co2+ and phosphoenolpyruvate with pyruvate kinase.
    Melamud E; Mildvan AS
    J Biol Chem; 1975 Oct; 250(20):8193-201. PubMed ID: 1236850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformations and arrangement of substrates at active sites of ATP-utilizing enzymes.
    Mildvan AS
    Philos Trans R Soc Lond B Biol Sci; 1981 Jun; 293(1063):65-74. PubMed ID: 6115425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 7Li, 31P, and 1H NMR studies of interactions between ATP, monovalent cations, and divalent cation sites on rabbit muscle pyruvate kinase.
    Van Divender JM; Grisham CM
    J Biol Chem; 1985 Nov; 260(26):14060-9. PubMed ID: 2997192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron paramagnetic resonance studies of the coordination schemes and site selectivities for divalent metal ions in complexes with pyruvate kinase.
    Buchbinder JL; Reed GH
    Biochemistry; 1990 Feb; 29(7):1799-806. PubMed ID: 2158815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of malic enzyme from pigeon liver. Magnetic resonance and kinetic studies of the role of Mn2+.
    Hsu RY; Mildvan AS; Chang G; Fung C
    J Biol Chem; 1976 Nov; 251(21):6574-83. PubMed ID: 988026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance studies of the proximity and spatial arrangement of propionyl coenzyme A and pyruvate on a biotin-metalloenzyme, transcarboxylase.
    Fung CH; Gupta RK; Mildvan AS
    Biochemistry; 1976 Jan; 15(1):85-92. PubMed ID: 174714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the oxalate-ATP complex with pyruvate kinase: ATP as a bridging ligand for the two divalent cations.
    Lodato DT; Reed GH
    Biochemistry; 1987 Apr; 26(8):2243-50. PubMed ID: 3040085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance and kinetic studies of pyruvate, phosphate dikinase. Interaction of oxalate with the phosphorylated form of the enzyme.
    Michaels G; Milner Y; Reed GH
    Biochemistry; 1975 Jul; 14(14):3213-9. PubMed ID: 167819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arrangement of the substrates at the active site of brain pyridoxal kinase.
    Wolkers WF; Gregory JD; Churchich JE; Serpersu EH
    J Biol Chem; 1991 Nov; 266(31):20761-6. PubMed ID: 1939126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance measurements of intersubstrate distances at the active site of protein kinase using substitution-inert cobalt(III) and chromium(III) complexes of adenosine 5'-(beta, gamma-methylenetriphosphate).
    Granot J; Mildvan AS; Bramson HN; Kaiser ET
    Biochemistry; 1980 Jul; 19(15):3537-43. PubMed ID: 6893273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mandelate racemase from Pseudomonas putida. Magnetic resonance and kinetic studies of the mechanism of catalysis.
    Maggio ET; Kenyon GL; Mildvan AS; Hegeman GD
    Biochemistry; 1975 Mar; 14(6):1131-9. PubMed ID: 164210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase.
    Danenberg KD; Cleland WW
    Biochemistry; 1975 Jan; 14(1):28-39. PubMed ID: 1089014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manganese (II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). II. Electron paramagnetic resonance and nuclear magnetic resonance studies of enzyme-bound manganese(II) with substrates and a potential transition-state analogue, methionine sulfoximine.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):544-53. PubMed ID: 3200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance study of the three-dimensional structure of creatine kinase-substrate complexes. Implications for substrate specificity and catalytic mechanism.
    McLaughlin AC; Leigh JS; Cohn M
    J Biol Chem; 1976 May; 251(9):2777-87. PubMed ID: 177421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.