These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 17741636)

  • 1. Scolytid beetles associated with douglas fir: response to terpenes.
    Rudinsky JA
    Science; 1966 Apr; 152(3719):218-9. PubMed ID: 17741636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatile and Within-Needle Terpene Changes to Douglas-fir Trees Associated With Douglas-fir Beetle (Coleoptera: Curculionidae) Attack.
    Giunta AD; Runyon JB; Jenkins MJ; Teich M
    Environ Entomol; 2016 Aug; 45(4):920-9. PubMed ID: 27231258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some effects of douglas fir terpenes on certain microorganisms.
    Andrews RE; Parks LW; Spence KD
    Appl Environ Microbiol; 1980 Aug; 40(2):301-4. PubMed ID: 16345609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foliar and cortex oleoresin variability of silver fir (Abies alba Mill.) in Albania.
    Zeneli G; Tsitsimpikou C; Petrakis PV; Naxakis G; Habili D; Roussis V
    Z Naturforsch C J Biosci; 2001; 56(7-8):531-9. PubMed ID: 11531086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendroctonus pseudotsugae: A Hypothesis Regarding Its Primary Attractant.
    Heikkenen HJ; Hrutfiord BF
    Science; 1965 Dec; 150(3702):1457-9. PubMed ID: 17782298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technique for using microencapsulated terpenes in lepidopteran artificial diets.
    Clancy KM; Foust RD; Huntsberger TG; Whitaker JG; Whitaker DM
    J Chem Ecol; 1992 Apr; 18(4):543-60. PubMed ID: 24253865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of various essential oils isolated from Douglas fir needles upon sheep and deer rumen microbial activity.
    Oh HK; Sakai T; Jones MB; Longhurst WM
    Appl Microbiol; 1967 Jul; 15(4):777-84. PubMed ID: 6049303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attraction of scolytids and associated beetles by different absolute amounts and proportions of α-pinene and ethanol.
    Schroeder LM; Lindelöw A
    J Chem Ecol; 1989 Mar; 15(3):807-17. PubMed ID: 24271886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroantennogram responses of Douglas-fir seed chalcids to plant volatiles.
    Thiéry D; Marion-Poll F
    J Insect Physiol; 1998 May; 44(5-6):483-490. PubMed ID: 12770168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.
    Hyatt DC; Croteau R
    Arch Biochem Biophys; 2005 Jul; 439(2):222-33. PubMed ID: 15978541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion exchange resins as catalyst for the isomerization of alpha-pinene to camphene.
    Chimal-Valencia O; Robau-Sánchez A; Collins-Martínez V; Aguilar-Elguézabal A
    Bioresour Technol; 2004 Jun; 93(2):119-23. PubMed ID: 15051072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis).
    Bohlmann J; Phillips M; Ramachandiran V; Katoh S; Croteau R
    Arch Biochem Biophys; 1999 Aug; 368(2):232-43. PubMed ID: 10441373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sites of production and occurrence of volatiles in Douglas-fir beetle,Dendroctonus pseudotsugae hopkins.
    Madden JL; Pierce HD; Borden JH; Butterfield A
    J Chem Ecol; 1988 Apr; 14(4):1305-17. PubMed ID: 24276212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ovicidal and adulticidal activity of Eucalyptus globulus leaf oil terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae).
    Yang YC; Choi HY; Choi WS; Clark JM; Ahn YJ
    J Agric Food Chem; 2004 May; 52(9):2507-11. PubMed ID: 15113148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemotherapeutic potential of the volatile oils from Zanthoxylum rhoifolium Lam leaves.
    da Silva SL; Figueiredo PM; Yano T
    Eur J Pharmacol; 2007 Dec; 576(1-3):180-8. PubMed ID: 17716654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of monoterpene biotransformation in two pseudomonads.
    Bicas JL; Fontanille P; Pastore GM; Larroche C
    J Appl Microbiol; 2008 Dec; 105(6):1991-2001. PubMed ID: 19120646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action of douglas fir tussock moth larvae and their microflora on dietary terpenes.
    Andrews RE; Spence KD
    Appl Environ Microbiol; 1980 Nov; 40(5):959-63. PubMed ID: 16345660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation.
    Librando V; Tringali G
    J Environ Manage; 2005 May; 75(3):275-82. PubMed ID: 15829369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ.
    Vallat A; Gu H; Dorn S
    Phytochemistry; 2005 Jul; 66(13):1540-50. PubMed ID: 15949824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile monoterpenes in black currant (Ribes nigrum L.) juice: effects of heating and enzymatic treatment by beta-glucosidase.
    Varming C; Andersen ML; Poll L
    J Agric Food Chem; 2006 Mar; 54(6):2298-302. PubMed ID: 16536610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.