These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transmitter release in inner hair cell synapses: a model analysis of spontaneous and driven rate properties of cochlear nerve fibres. Schoonhoven R; Prijs VF; Frijns JH Hear Res; 1997 Nov; 113(1-2):247-60. PubMed ID: 9388003 [TBL] [Abstract][Full Text] [Related]
3. Changes in cochlear sensitivity do not alter relative thresholds of different spontaneous rate categories of primary auditory nerve fibres. Robertson D; Wilson SA Hear Res; 1991 Jan; 51(1):29-32. PubMed ID: 2013543 [TBL] [Abstract][Full Text] [Related]
4. Rate-versus-level functions of primary auditory nerve fibres: evidence for square law behaviour of all fibre categories in the guinea pig. Müller M; Robertson D; Yates GK Hear Res; 1991 Sep; 55(1):50-6. PubMed ID: 1752794 [TBL] [Abstract][Full Text] [Related]
5. Effects of selective inner hair cell loss on auditory nerve fiber threshold, tuning and spontaneous and driven discharge rate. Wang J; Powers NL; Hofstetter P; Trautwein P; Ding D; Salvi R Hear Res; 1997 May; 107(1-2):67-82. PubMed ID: 9165348 [TBL] [Abstract][Full Text] [Related]
6. A model for discharge patterns of primary auditory-nerve fibers. Geisler CD Brain Res; 1981 May; 212(1):198-201. PubMed ID: 6112046 [TBL] [Abstract][Full Text] [Related]
8. The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. Liberman MC J Acoust Soc Am; 1982 Nov; 72(5):1441-9. PubMed ID: 7175031 [TBL] [Abstract][Full Text] [Related]
9. The relation between the endocochlear potential and spontaneous activity in auditory nerve fibres of the cat. Sewell WF J Physiol; 1984 Feb; 347():685-96. PubMed ID: 6707972 [TBL] [Abstract][Full Text] [Related]
10. Threshold sensitivity of the auditory pathway: effects of worsening signal-to-noise ratio in the auditory nerve. Leng G; Comis SD Hear Res; 1981 Mar; 4(1):103-8. PubMed ID: 7204257 [TBL] [Abstract][Full Text] [Related]
11. Suppression in auditory-nerve fibers of cats using low-side suppressors. III. Model results. Cai Y; Geisler CD Hear Res; 1996 Jul; 96(1-2):126-40. PubMed ID: 8817312 [TBL] [Abstract][Full Text] [Related]
12. Effects of increased potassium in scala tympani on auditory nerve sensitivity. Leng G; Comis SD Experientia; 1979 Jun; 35(6):767-8. PubMed ID: 467581 [TBL] [Abstract][Full Text] [Related]
13. A new approach to the guinea pig auditory nerve. Alder VA; Johnstone BM J Acoust Soc Am; 1978 Aug; 64(2):684-7. PubMed ID: 712013 [TBL] [Abstract][Full Text] [Related]
14. Threshold tuning curves of chinchilla auditory nerve fibers. II. Dependence on spontaneous activity and relation to cochlear nonlinearity. Temchin AN; Rich NC; Ruggero MA J Neurophysiol; 2008 Nov; 100(5):2899-906. PubMed ID: 18753325 [TBL] [Abstract][Full Text] [Related]
15. Thresholds for primary auditory fibers using statistically defined criteria. Geisler CD; Deng L; Greenberg SR J Acoust Soc Am; 1985 Mar; 77(3):1102-9. PubMed ID: 3980864 [TBL] [Abstract][Full Text] [Related]
16. Sound coding in the auditory nerve of gerbils. Huet A; Batrel C; Tang Y; Desmadryl G; Wang J; Puel JL; Bourien J Hear Res; 2016 Aug; 338():32-9. PubMed ID: 27220483 [TBL] [Abstract][Full Text] [Related]
17. The response of guinea pig auditory-nerve fibers with high spontaneous discharge rates to increments in intensity. Winter IM; Palmer AR; Meddis R Brain Res; 1993 Jul; 618(1):167-70. PubMed ID: 8402171 [TBL] [Abstract][Full Text] [Related]
18. Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Narayan SS; Temchin AN; Recio A; Ruggero MA Science; 1998 Dec; 282(5395):1882-4. PubMed ID: 9836636 [TBL] [Abstract][Full Text] [Related]
19. Frequency threshold curves and simultaneous masking functions in single fibres of the guinea pig auditory nerve. Pickles JO Hear Res; 1984 Jun; 14(3):245-56. PubMed ID: 6480512 [TBL] [Abstract][Full Text] [Related]