BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 1774383)

  • 1. Changes in acid-phosphate content in enamel mineral during porcine amelogenesis.
    Shimoda S; Aoba T; Moreno EC
    J Dent Res; 1991 Dec; 70(12):1516-23. PubMed ID: 1774383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the solubility of enamel mineral at various stages of porcine amelogenesis.
    Aoba T; Moreno EC
    Calcif Tissue Int; 1992 Mar; 50(3):266-72. PubMed ID: 1617502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labile or surface pools of magnesium, sodium, and potassium in developing porcine enamel mineral.
    Aoba T; Shimoda S; Moreno EC
    J Dent Res; 1992 Nov; 71(11):1826-31. PubMed ID: 1401446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the nature and composition of enamel mineral during porcine amelogenesis.
    Aoba T; Moreno EC
    Calcif Tissue Int; 1990 Dec; 47(6):356-64. PubMed ID: 1963381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent observations on enamel crystal formation during mammalian amelogenesis.
    Aoba T
    Anat Rec; 1996 Jun; 245(2):208-18. PubMed ID: 8769664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epitaxial overgrowth of apatite crystals on the thin-ribbon precursor at early stages of porcine enamel mineralization.
    Miake Y; Shimoda S; Fukae M; Aoba T
    Calcif Tissue Int; 1993 Oct; 53(4):249-56. PubMed ID: 8275353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of enamel matrix using a two-dimensional protein fractionation system.
    Yamakoshi Y; Hu JC; Zhang H; Iwata T; Yamakoshi F; Simmer JP
    Eur J Oral Sci; 2006 May; 114 Suppl 1():266-71; discussion 285-6, 382. PubMed ID: 16674696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solubility of human enamel mineral.
    Moreno EC; Aoba T
    J Biol Buccale; 1990 Sep; 18(3):195-201. PubMed ID: 2174870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of glycosylated matrix proteins in secretory porcine enamel and their possible functional roles in enamel mineralization.
    Akita H; Fukae M; Shimoda S; Aoba T
    Arch Oral Biol; 1992 Nov; 37(11):953-62. PubMed ID: 1334650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal growth in dental enamel: the role of amelogenins and albumin.
    Robinson C; Brookes SJ; Kirkham J; Bonass WA; Shore RC
    Adv Dent Res; 1996 Nov; 10(2):173-9; discussion 179-80. PubMed ID: 9206334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mineral acquisition rates in developing enamel on maxillary and mandibular incisors of rats and mice: implications to extracellular acid loading as apatite crystals mature.
    Smith CE; Chong DL; Bartlett JD; Margolis HC
    J Bone Miner Res; 2005 Feb; 20(2):240-9. PubMed ID: 15647818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution of powdered human enamel suspended in acid solutions at a high solid/solution ratio under a 5% CO2 atmosphere at 20 degrees C.
    Larsen MJ; Pearce EI; Ravnholt G
    Arch Oral Biol; 1997 Sep; 42(9):657-63. PubMed ID: 9403120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible function of matrix proteins in fluoride incorporation into enamel mineral during porcine amelogenesis.
    Aoba T; Collins J; Moreno EC
    J Dent Res; 1989 Jul; 68(7):1162-8. PubMed ID: 2561129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of fluoride on matrix proteins and their properties in rat secretory enamel.
    Aoba T; Moreno EC; Tanabe T; Fukae M
    J Dent Res; 1990 Jun; 69(6):1248-55. PubMed ID: 2162362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1991 Dec; 49(6):383-8. PubMed ID: 1818762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix and mineral changes in developing enamel.
    Robinson C; Briggs HD; Atkinson PJ; Weatherell JA
    J Dent Res; 1979 Mar; 58(Spec Issue B):871-82. PubMed ID: 283129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineral and protein concentrations in enamel of the developing permanent porcine dentition.
    Robinson C; Kirkham J; Weatherell JA; Richards A; Josephsen K; Fejerskov O
    Caries Res; 1988; 22(6):321-6. PubMed ID: 3214845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MMP20 Proteolysis of Native Amelogenin Regulates Mineralization In Vitro.
    Kwak SY; Yamakoshi Y; Simmer JP; Margolis HC
    J Dent Res; 2016 Dec; 95(13):1511-1517. PubMed ID: 27558264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and composition studies on the mineral of newly formed dental enamel: a chemical, x-ray diffraction, and 31P and proton nuclear magnetic resonance study.
    Bonar LC; Shimizu M; Roberts JE; Griffin RG; Glimcher MJ
    J Bone Miner Res; 1991 Nov; 6(11):1167-76. PubMed ID: 1666806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.