BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 17744720)

  • 1. An SCF Solvation Model for the Hydrophobic Effect and Absolute Free Energies of Aqueous Solvation.
    Cramer CJ; Truhlar DG
    Science; 1992 Apr; 256(5054):213-7. PubMed ID: 17744720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities.
    Ginovska B; Camaioni DM; Dupuis M; Schwerdtfeger CA; Gil Q
    J Phys Chem A; 2008 Oct; 112(42):10604-13. PubMed ID: 18816107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. I-SOLV: a new surface-based empirical model for computing solvation free energies.
    Wang R; Lin F; Xu Y; Cheng T
    J Mol Graph Model; 2007 Jul; 26(1):368-77. PubMed ID: 17317248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free energy of solvation from molecular dynamics simulation applying Voronoi-Delaunay triangulation to the cavity creation.
    Goncalves PF; Stassen H
    J Chem Phys; 2005 Dec; 123(21):214109. PubMed ID: 16356041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extension of a temperature-dependent aqueous solvation model to compounds containing nitrogen, fluorine, chlorine, bromine, and sulfur.
    Chamberlin AC; Cramer CJ; Truhlar DG
    J Phys Chem B; 2008 Mar; 112(10):3024-39. PubMed ID: 18281971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration in discrete water. A mean field, cellular automata based approach to calculating hydration free energies.
    Setny P; Zacharias M
    J Phys Chem B; 2010 Jul; 114(26):8667-75. PubMed ID: 20552986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of solvation free energy from quantum mechanical charge density and continuum dielectric theory.
    Wang M; Wong CF
    J Phys Chem A; 2006 Apr; 110(14):4873-9. PubMed ID: 16599457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio self-consistent field and potential-dependent partial equalization of orbital electronegativity calculations of hydration properties of N-acetyl-N'-methyl-alanineamide.
    Grant JA; Williams RL; Scheraga HA
    Biopolymers; 1990; 30(9-10):929-49. PubMed ID: 2092822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the solvation free energy of neutral and ionic molecules in diverse solvents.
    Lee S; Cho KH; Lee CJ; Kim GE; Na CH; In Y; No KT
    J Chem Inf Model; 2011 Jan; 51(1):105-14. PubMed ID: 21133372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method.
    Xie L; Liu H
    J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy of solvation from molecular dynamics simulations for low dielectric solvents.
    Gonçalves PF; Stassen H
    J Comput Chem; 2003 Nov; 24(14):1758-65. PubMed ID: 12964194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a two-length-scale field theory to the solvation of neutral and charged molecules.
    Sitnikov G; Taran M; Muryshev A; Nechaev S
    J Chem Phys; 2006 Mar; 124(9):94501. PubMed ID: 16526861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VBSM: a solvation model based on valence bond theory.
    Su P; Wu W; Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem A; 2008 Dec; 112(50):12761-8. PubMed ID: 18671376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute solvation free energy of Li+ and Na+ ions in dimethyl sulfoxide solution: a theoretical ab initio and cluster-continuum model study.
    Westphal E; Pliego JR
    J Chem Phys; 2005 Aug; 123(7):074508. PubMed ID: 16229602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of solvation free energies and solubilities in supercritical solvents.
    Su Z; Maroncelli M
    J Chem Phys; 2006 Apr; 124(16):164506. PubMed ID: 16674145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revised self-consistent continuum solvation in electronic-structure calculations.
    Andreussi O; Dabo I; Marzari N
    J Chem Phys; 2012 Feb; 136(6):064102. PubMed ID: 22360164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.