These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 17746262)
1. Control of calcium carbonate nucleation and crystal growth by soluble matrx of oyster shell. Wheeler AP; George JW; Evans CA Science; 1981 Jun; 212(4501):1397-8. PubMed ID: 17746262 [TBL] [Abstract][Full Text] [Related]
2. On self-organized shell formation by bovine carbonic anhydrase II, and soluble protein extracted from regenerated shell. Lee SW; Park SB; Choi CS Micron; 2008 Dec; 39(8):1228-34. PubMed ID: 18501616 [TBL] [Abstract][Full Text] [Related]
3. N40, a novel nonacidic matrix protein from pearl oyster nacre, facilitates nucleation of aragonite in vitro. Yan Z; Jing G; Gong N; Li C; Zhou Y; Xie L; Zhang R Biomacromolecules; 2007 Nov; 8(11):3597-601. PubMed ID: 17929965 [TBL] [Abstract][Full Text] [Related]
4. Intestinal absorption of oyster shell electrolysate. Fujita T; Fukase M; Nakada M; Koishi M Bone Miner; 1988 Sep; 4(4):321-7. PubMed ID: 3191287 [TBL] [Abstract][Full Text] [Related]
5. Cloning and expression of a pivotal calcium metabolism regulator: calmodulin involved in shell formation from pearl oyster (Pinctada fucata). Li S; Xie L; Zhang C; Zhang Y; Gu M; Zhang R Comp Biochem Physiol B Biochem Mol Biol; 2004 Jul; 138(3):235-43. PubMed ID: 15253872 [TBL] [Abstract][Full Text] [Related]
6. In vitro regulation of CaCO(3) crystal polymorphism by the highly acidic molluscan shell protein Aspein. Takeuchi T; Sarashina I; Iijima M; Endo K FEBS Lett; 2008 Mar; 582(5):591-6. PubMed ID: 18242173 [TBL] [Abstract][Full Text] [Related]
7. Hemocyte-mediated shell mineralization in the eastern oyster. Mount AS; Wheeler AP; Paradkar RP; Snider D Science; 2004 Apr; 304(5668):297-300. PubMed ID: 15073378 [TBL] [Abstract][Full Text] [Related]
8. Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata. Saruwatari K; Matsui T; Mukai H; Nagasawa H; Kogure T Biomaterials; 2009 Jun; 30(16):3028-34. PubMed ID: 19328543 [TBL] [Abstract][Full Text] [Related]
9. [Metabolism and utilization of calcium derived from hydrolysed oyster shell in rats]. Shen X; Lu R; Wu M Zhonghua Yu Fang Yi Xue Za Zhi; 1996 Mar; 30(2):91-3. PubMed ID: 8758856 [TBL] [Abstract][Full Text] [Related]
10. The inner-shell film: an immediate structure participating in pearl oyster shell formation. Yan Z; Ma Z; Zheng G; Feng Q; Wang H; Xie L; Zhang R Chembiochem; 2008 May; 9(7):1093-9. PubMed ID: 18383500 [TBL] [Abstract][Full Text] [Related]
11. Chemical-mechanical characteristics of crushed oyster-shell. Yoon GL; Kim BT; Kim BO; Han SH Waste Manag; 2003; 23(9):825-34. PubMed ID: 14583245 [TBL] [Abstract][Full Text] [Related]
12. Molluscan shell proteins: primary structure, origin, and evolution. Marin F; Luquet G; Marie B; Medakovic D Curr Top Dev Biol; 2008; 80():209-76. PubMed ID: 17950376 [TBL] [Abstract][Full Text] [Related]
13. Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Tsukamoto D; Sarashina I; Endo K Biochem Biophys Res Commun; 2004 Aug; 320(4):1175-80. PubMed ID: 15249213 [TBL] [Abstract][Full Text] [Related]
14. An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Suzuki M; Saruwatari K; Kogure T; Yamamoto Y; Nishimura T; Kato T; Nagasawa H Science; 2009 Sep; 325(5946):1388-90. PubMed ID: 19679771 [TBL] [Abstract][Full Text] [Related]
15. The structure-function relationship analysis of Prismalin-14 from the prismatic layer of the Japanese pearl oyster, Pinctada fucata. Suzuki M; Nagasawa H FEBS J; 2007 Oct; 274(19):5158-66. PubMed ID: 17822437 [TBL] [Abstract][Full Text] [Related]
17. Phosphorous retention capacity of filter media for estimating the longevity of constructed wetland. Seo DC; Cho JS; Lee HJ; Heo JS Water Res; 2005 Jun; 39(11):2445-7. PubMed ID: 15978654 [TBL] [Abstract][Full Text] [Related]
18. Immunolocalization of matrix proteins in nacre lamellae and their in vivo effects on aragonitic tablet growth. Gong N; Shangguan J; Liu X; Yan Z; Ma Z; Xie L; Zhang R J Struct Biol; 2008 Oct; 164(1):33-40. PubMed ID: 18620869 [TBL] [Abstract][Full Text] [Related]
19. Heterogeneous nucleation and growth of calcium carbonate on calcite and quartz. Lioliou MG; Paraskeva CA; Koutsoukos PG; Payatakes AC J Colloid Interface Sci; 2007 Apr; 308(2):421-8. PubMed ID: 17258223 [TBL] [Abstract][Full Text] [Related]
20. [Pancreatic lithostathine inhibitor of calcium carbonate precipitation: structure-function relationship]. Bernard JP; Takacs T; de Reggi M; Sarles H; Dagorn JC Nephrologie; 1993; 14(6):257-9. PubMed ID: 8145882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]