These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17749309)

  • 1. Chondrites: initial strontium-87/strontium-86 ratios and the early history of the solar system.
    Wetherill GW; Mark R; Lee-Hu C
    Science; 1973 Oct; 182(4109):281-3. PubMed ID: 17749309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhenium-osmium isotope systematics of carbonaceous chondrites.
    Walker RJ; Morgan JW
    Science; 1989 Jan; 243(4890):519-22. PubMed ID: 17799187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI.
    Young ED; Russell SS
    Science; 1998 Oct; 282(5388):452-5. PubMed ID: 9841405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen reservoirs in the early solar nebula inferred from an allende CAI.
    Young ED; Russell SS
    Science; 1998 Oct; 282(5388):452-5. PubMed ID: 9774267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Netschaevo: a new class of chondritic meteorite.
    Bild RW; Wasson JT
    Science; 1977 Jul; 197(4298):58-62. PubMed ID: 17828893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions.
    Bizzarro M; Baker JA; Haack H
    Nature; 2004 Sep; 431(7006):275-8. PubMed ID: 15372023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium isotope signatures of calcium-aluminum-rich inclusions from CV and CK chondrites: Implications for early Solar System reservoirs and mixing.
    Torrano ZA; Brennecka GA; Williams CD; Romaniello SJ; Rai VK; Wadhwa M
    Geochim Cosmochim Acta; 2019 Oct; 263():13-30. PubMed ID: 33414563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strontium-Rubidium Age of an Iron Meteorite.
    Wasserburg GJ; Burnett DS; Frondel C
    Science; 1965 Dec; 150(3705):1814-8. PubMed ID: 17841975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrite barium, neodymium, and samarium isotopic heterogeneity and early Earth differentiation.
    Carlson RW; Boyet M; Horan M
    Science; 2007 May; 316(5828):1175-8. PubMed ID: 17525335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206.
    Tatsumoto M; Knight RJ; Allegre CJ
    Science; 1973 Jun; 180(4092):1279-83. PubMed ID: 17759123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites.
    Sharp ZD; Barnes JD; Brearley AJ; Chaussidon M; Fischer TP; Kamenetsky VS
    Nature; 2007 Apr; 446(7139):1062-5. PubMed ID: 17460668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meteoritic Evidence for a Ceres-sized Water-rich Carbonaceous Chondrite Parent Asteroid.
    Hamilton VE; Goodrich CA; Treiman AH; Connolly HC; Zolensky ME; Shaddad MH
    Nat Astron; 2020; 2020():. PubMed ID: 33681472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Siderophile element constraints on the thermal history of the H chondrite parent body.
    Archer GJ; Walker RJ; Tino J; Blackburn T; Kruijer TS; Hellmann JL
    Geochim Cosmochim Acta; 2019 Jan; 245():556-576. PubMed ID: 30846885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite.
    Lin Y; Guan Y; Leshin LA; Ouyang Z; Wang D
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1306-11. PubMed ID: 15671168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Samarium-146 in the early solar system: evidence from neodymium in the allende meteorite.
    Lugmair GW; Shimamura T; Lewis RS; Anders E
    Science; 1983 Dec; 222(4627):1015-8. PubMed ID: 17776245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble-gas-rich chondrules in an enstatite meteorite.
    Okazaki R; Takaoka N; Nagao K; Sekiya M; Nakamura T
    Nature; 2001 Aug; 412(6849):795-8. PubMed ID: 11518959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotopic constraints on the age and early differentiation of the Earth.
    McCulloch MT
    J R Soc West Aust; 1996 Mar; 79 Pt 1():131-9. PubMed ID: 11541323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions.
    Krot AN; Yurimoto H; Hutcheon ID; MacPherson GJ
    Nature; 2005 Apr; 434(7036):998-1001. PubMed ID: 15846340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile fractionation in the early solar system and chondrule/matrix complementarity.
    Bland PA; Alard O; Benedix GK; Kearsley AT; Menzies ON; Watt LE; Rogers NW
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13755-60. PubMed ID: 16174733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early aqueous activity on primitive meteorite parent bodies.
    Endress M; Zinner E; Bischoff A
    Nature; 1996 Feb; 379(6567):701-3. PubMed ID: 8602215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.