These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effect of p-nitro-substitution on the metabolism of benzoic acid in the Indian fruit bat. Emerole GO; French MR; Williams RT Biochem Exp Biol; 1977; 13(4):385-90. PubMed ID: 16296168 [TBL] [Abstract][Full Text] [Related]
4. Translocation of a Radioactive Plant-Growth Regulator in Bean and Barley Plants. Wood JW; Mitchell JW; Irving GW Science; 1947 Mar; 105(2726):337-9. PubMed ID: 17836263 [No Abstract] [Full Text] [Related]
5. Cookies elaborated with oat and common bean flours improved serum markers in diabetic rats. Pérez-Ramírez IF; Becerril-Ocampo LJ; Reynoso-Camacho R; Herrera MD; Guzmán-Maldonado SH; Cruz-Bravo RK J Sci Food Agric; 2018 Feb; 98(3):998-1007. PubMed ID: 28718519 [TBL] [Abstract][Full Text] [Related]
6. Inhibitors of pepsin, trypsin and chymotrypsin in seeds of plants consumed by humans and animals. I. Evaluation of pepsin, trypsin, and chymotrypsin inhibitors activity in seeds of 26 plant species. Bańkowska A; Roszkowska-Jakimiec W; Worowski K Rocz Akad Med Bialymst; 1998; 43():278-86. PubMed ID: 9972064 [TBL] [Abstract][Full Text] [Related]
7. Microgravity effects on plant growth and lignification. Cowles JR; Lemay R; Jahns G Astrophys Lett Commun; 1988; 27():223-8. PubMed ID: 11539286 [TBL] [Abstract][Full Text] [Related]
8. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Sapre S; Gontia-Mishra I; Tiwari S Microbiol Res; 2018 Jan; 206():25-32. PubMed ID: 29146257 [TBL] [Abstract][Full Text] [Related]
9. Oat (Avena sativa) seed extract as an antifungal food preservative through the catalytic activity of a highly abundant class I chitinase. Sørensen HP; Madsen LS; Petersen J; Andersen JT; Hansen AM; Beck HC Appl Biochem Biotechnol; 2010 Mar; 160(6):1573-84. PubMed ID: 19224400 [TBL] [Abstract][Full Text] [Related]
10. Growth and pentose nucleic acid content of bean embryo. OSAWA S; OOTA Y Experientia; 1953 Mar; 9(3):96-8. PubMed ID: 13068388 [No Abstract] [Full Text] [Related]
11. Phenolic and short-chained aliphatic organic acid constituents of wild oat (Avena fatua L.) seeds. Gallagher RS; Ananth R; Granger K; Bradley B; Anderson JV; Fuerst EP J Agric Food Chem; 2010 Jan; 58(1):218-25. PubMed ID: 20017486 [TBL] [Abstract][Full Text] [Related]
12. Gibberellin-like effects of KAR1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos. Cembrowska-Lech D; Kępczyński J Planta; 2016 Feb; 243(2):531-48. PubMed ID: 26526413 [TBL] [Abstract][Full Text] [Related]
13. [The role of hormonal balance in plant adaptation to flooding]. Bakhtenko EIu; Skorobogatova IV; Karsunkina NP Izv Akad Nauk Ser Biol; 2007; (6):682-90. PubMed ID: 19768962 [TBL] [Abstract][Full Text] [Related]
14. [RBE of 252 Cf for growth reduction in Vicia faba bean roots (author's transl)]. Wambersie A; Van Dam J; Dutreix A; Bouhnik H J Belge Radiol; 1981; 64(3):255-61. PubMed ID: 7309674 [No Abstract] [Full Text] [Related]
15. Preferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat (Avena sativa L.) × pearl millet (Pennisetum glaucum L.) hybrid embryos. Ishii T; Sunamura N; Matsumoto A; Eltayeb AE; Tsujimoto H Chromosome Res; 2015 Dec; 23(4):709-18. PubMed ID: 26134441 [TBL] [Abstract][Full Text] [Related]
16. [Effect of different doses of ionizing radiation on levels of endogenous growth regulators and polyphenol oxidase activity in plants after presowing irradiation of Vicia faba bean seeds]. Kriukova LM; Maevskaia ZV Radiobiologiia; 1976; 16(6):914-7. PubMed ID: 829164 [No Abstract] [Full Text] [Related]
17. Consumption of diets containing raw soya beans (Glycine max), kidney beans (Phaseolus vulgaris), cowpeas (Vigna unguiculata) or lupin seeds (Lupinus angustifolius) by rats for up to 700 days: effects on body composition and organ weights. Grant G; Dorward PM; Buchan WC; Armour JC; Pusztai A Br J Nutr; 1995 Jan; 73(1):17-29. PubMed ID: 7857911 [TBL] [Abstract][Full Text] [Related]
18. Reactivity of active site SH groups and site heterogeneity in mung bean glyceraldehyde 3-phosphate dehydrogenase: effect of coenzyme and substrate. Malhotra OP; Srinivasan ; Singh LR Indian J Biochem Biophys; 1985 Oct; 22(5):281-5. PubMed ID: 3833665 [No Abstract] [Full Text] [Related]
19. Development of a method for the analysis of four plant growth regulators (PGRs) residues in soybean sprouts and mung bean sprouts by liquid chromatography-tandem mass spectrometry. Zhang F; Zhao P; Shan W; Gong Y; Jian Q; Pan C Bull Environ Contam Toxicol; 2012 Sep; 89(3):674-9. PubMed ID: 22885546 [TBL] [Abstract][Full Text] [Related]
20. [Determination of raffinose type sugars in seeds of leguminous plants by high pressure liquid chromatography (HPLC)]. Kosson R Rocz Panstw Zakl Hig; 1992; 43(2):179-85. PubMed ID: 1470865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]