These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1775189)

  • 21. ATP-sensitive K+ channel modification by metabolic inhibition in isolated guinea-pig ventricular myocytes.
    Deutsch N; Weiss JN
    J Physiol; 1993 Jun; 465():163-79. PubMed ID: 8229832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anoxia induces time-independent K+ current through KATP channels in isolated heart cells of the guinea-pig.
    Benndorf K; Bollmann G; Friedrich M; Hirche H
    J Physiol; 1992 Aug; 454():339-57. PubMed ID: 1474494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ATP-sensitive potassium channels in neonatal and adult rabbit ventricular myocytes.
    Chen F; Wetzel GT; Friedman WF; Klitzner TS
    Pediatr Res; 1992 Aug; 32(2):230-5. PubMed ID: 1508616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of ATP-sensitive K+ channel blockers on the action potential shortening in hypoxic and ischaemic myocardium.
    Nakaya H; Takeda Y; Tohse N; Kanno M
    Br J Pharmacol; 1991 May; 103(1):1019-26. PubMed ID: 1908730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of temperature on the activation of myocardial KATP channel in guinea pig ventricular myocytes: a pilot study by whole cell patch clamp recording.
    Jin SQ; Niu LJ; Deng CY; Yao ZB; Zhou YJ
    Chin Med J (Engl); 2006 Oct; 119(20):1721-6. PubMed ID: 17097020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of cardiac ATP-sensitive K+ channels by KRN4884, a novel K+ channel opener.
    Shinbo A; Ono K; Iijima T
    J Pharmacol Exp Ther; 1997 Nov; 283(2):770-7. PubMed ID: 9353397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diadenosine tetraphosphate-induced inhibition of ATP-sensitive K+ channels in patches excised from ventricular myocytes.
    Jovanovic A; Terzic A
    Br J Pharmacol; 1996 Jan; 117(2):233-5. PubMed ID: 8789372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isoflurane decreases ATP sensitivity of guinea pig cardiac sarcolemmal KATP channel at reduced intracellular pH.
    Stadnicka A; Bosnjak ZJ
    Anesthesiology; 2003 Feb; 98(2):396-403. PubMed ID: 12552199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of levcromakalim and nucleoside diphosphates on glibenclamide-sensitive K+ channels in pig urethral myocytes.
    Teramoto N; McMurray G; Brading AF
    Br J Pharmacol; 1997 Apr; 120(7):1229-40. PubMed ID: 9105697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanosensitive gating of atrial ATP-sensitive potassium channels.
    Van Wagoner DR
    Circ Res; 1993 May; 72(5):973-83. PubMed ID: 8477531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glibenclamide specifically blocks ATP-sensitive K+ channel current in atrial myocytes of guinea pig heart.
    Hamada E; Takikawa R; Ito H; Iguchi M; Terano A; Sugimoto T; Kurachi Y
    Jpn J Pharmacol; 1990 Dec; 54(4):473-7. PubMed ID: 2128353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of anoxic preconditioning on ATP-sensitive potassium channels in guinea-pig ventricular myocytes.
    Zhu Z; Li YL; Li DP; He RR
    Pflugers Arch; 2000 Apr; 439(6):808-13. PubMed ID: 10784356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the mechanism of G protein beta gamma subunit activation of the muscarinic K+ channel in guinea pig atrial cell membrane. Comparison with the ATP-sensitive K+ channel.
    Ito H; Tung RT; Sugimoto T; Kobayashi I; Takahashi K; Katada T; Ui M; Kurachi Y
    J Gen Physiol; 1992 Jun; 99(6):961-83. PubMed ID: 1640222
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Openings of cardiac KATP channel by oxygen free radicals produced by xanthine oxidase reaction.
    Tokube K; Kiyosue T; Arita M
    Am J Physiol; 1996 Aug; 271(2 Pt 2):H478-89. PubMed ID: 8770087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ischemic cardioprotection by ATP-sensitive K+ channels involves high-energy phosphate preservation.
    McPherson CD; Pierce GN; Cole WC
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1809-18. PubMed ID: 8238595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonspecific inhibition of adenosine-activated K+ current by glibenclamide in guinea pig atrial myocytes.
    Song Y; Srinivas M; Belardinelli L
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2430-7. PubMed ID: 8997302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle.
    Venkatesh N; Lamp ST; Weiss JN
    Circ Res; 1991 Sep; 69(3):623-37. PubMed ID: 1908355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of ATP sensitive potassium channel of isolated guinea pig ventricular myocytes by sarcolemmal monocarboxylate transport.
    Coetzee WA
    Cardiovasc Res; 1992 Nov; 26(11):1077-86. PubMed ID: 1291085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The regulation of ATP-sensitive K+ channel activity in intact and permeabilized rat ventricular myocytes.
    Nichols CG; Lederer WJ
    J Physiol; 1990 Apr; 423():91-110. PubMed ID: 2388163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein kinase C isoform-dependent modulation of ATP-sensitive K+ channels during reoxygenation in guinea-pig ventricular myocytes.
    Ito K; Sato T; Arita M
    J Physiol; 2001 Apr; 532(Pt 1):165-74. PubMed ID: 11283232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.