These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 17752760)

  • 1. A formation mechanism for catalytically grown helix-shaped graphite nanotubes.
    Amelinckx S; Zhang XB; Bernaerts D; Zhang XF; Ivanov V; Nagy JB
    Science; 1994 Jul; 265(5172):635-9. PubMed ID: 17752760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube formation and growth via particle-particle interaction.
    Height MJ; Howard JB; Tester JW; Vander Sande JB
    J Phys Chem B; 2005 Jun; 109(25):12337-46. PubMed ID: 16852523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structure model and growth mechanism for multishell carbon nanotubes.
    Amelinckx S; Bernaerts D; Zhang XB; Van Tendeloo G; Van Landuyt J
    Science; 1995 Mar; 267(5202):1334-8. PubMed ID: 17812608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermogravimetric analysis of synthesis variation effects on CVD generated multiwalled carbon nanotubes.
    McKee GS; Vecchio KS
    J Phys Chem B; 2006 Jan; 110(3):1179-86. PubMed ID: 16471661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubular graphite cones.
    Zhang G; Jiang X; Wang E
    Science; 2003 Apr; 300(5618):472-4. PubMed ID: 12702873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relevant synthesis parameters for the sequential catalytic growth of carbon nanotubes.
    Jourdain V; Paillet M; Almairac R; Loiseau A; Bernier P
    J Phys Chem B; 2005 Feb; 109(4):1380-6. PubMed ID: 16851106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites.
    Banks CE; Davies TJ; Wildgoose GG; Compton RG
    Chem Commun (Camb); 2005 Feb; (7):829-41. PubMed ID: 15700054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced field emission from multiwall carbon nanotube films by secondary growth.
    Klinke C; Delvigne E; Barth JV; Kern K
    J Phys Chem B; 2005 Nov; 109(46):21677-80. PubMed ID: 16853815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions.
    Sharma R; Rez P; Treacy MM; Stuart SJ
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):231-7. PubMed ID: 16123070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helical carbon nanotubes: catalytic particle size-dependent growth and magnetic properties.
    Tang N; Wen J; Zhang Y; Liu F; Lin K; Du Y
    ACS Nano; 2010 Jan; 4(1):241-50. PubMed ID: 20047304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-catalytic behavior of carbon nanotubes.
    Zhu Z; Lu Y; Qiao D; Bai S; Hu T; Li L; Zheng J
    J Am Chem Soc; 2005 Nov; 127(45):15698-9. PubMed ID: 16277500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts.
    Moore RR; Banks CE; Compton RG
    Anal Chem; 2004 May; 76(10):2677-82. PubMed ID: 15144174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoassembly of meso-tetraphenylporphines on surfaces of carbon materials: initial steps as studied by molecular mechanics and scanning tunneling microscopy.
    Basiuk VA; Bassiouk M
    J Nanosci Nanotechnol; 2008 Jan; 8(1):259-67. PubMed ID: 18468069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of single-walled carbon nanotubes from sharp metal tips.
    Rodríguez-Manzo JA; Janowska I; Pham-Huu C; Tolvanen A; Krasheninnikov AV; Nordlund K; Banhart F
    Small; 2009 Dec; 5(23):2710-5. PubMed ID: 19743432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalyst volume to surface area constraints for nucleating carbon nanotubes.
    Rümmeli MH; Kramberger C; Löffler M; Jost O; Bystrzejewski M; Grüneis A; Gemming T; Pompe W; Büchner B; Pichler T
    J Phys Chem B; 2007 Jul; 111(28):8234-41. PubMed ID: 17580861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tubular carbon nano-/microstructures synthesized from graphite powders by an in situ template process.
    Shen G; Bando Y; Zhi C; Golberg D
    J Phys Chem B; 2006 Jun; 110(22):10714-9. PubMed ID: 16771318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of low-dimensional inorganic nanotube crystallites in carbon nanotubes.
    Wilson M
    J Chem Phys; 2006 Mar; 124(12):124706. PubMed ID: 16599717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectroscopy and imaging of ultralong carbon nanotubes.
    Doorn SK; Zheng L; O'connell MJ; Zhu Y; Huang S; Liu J
    J Phys Chem B; 2005 Mar; 109(9):3751-8. PubMed ID: 16851421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.