These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1775373)

  • 21. Current-voltage relations of the basolateral membrane in tight amphibian epithelia: use of nystatin to depolarize the apical membrane.
    Garty H
    J Membr Biol; 1984; 77(3):213-22. PubMed ID: 6422046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of hyperosmotic challenge on basolateral membrane potential in rabbit urinary bladder.
    Donaldson PJ; Lewis SA
    Am J Physiol; 1990 Feb; 258(2 Pt 1):C248-57. PubMed ID: 2106264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulation by cGMP of apical Na channels and cation channels in toad urinary bladder.
    Das S; Garepapaghi M; Palmer LG
    Am J Physiol; 1991 Feb; 260(2 Pt 1):C234-41. PubMed ID: 1705097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the basolateral membrane conductance of Necturus urinary bladder.
    Demarest JR; Finn AL
    J Gen Physiol; 1987 Apr; 89(4):541-62. PubMed ID: 2438371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular microelectrode characterization of the rabbit cortical collecting duct.
    Koeppen BM; Biagi BA; Giebisch GH
    Am J Physiol; 1983 Jan; 244(1):F35-47. PubMed ID: 6295184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Passive electrical properties of toad urinary bladder epithelium. Intercellular electrical coupling and transepithelial cellular and shunt conductances.
    Reuss L; Finn AL
    J Gen Physiol; 1974 Jul; 64(1):1-25. PubMed ID: 4209766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microelectrode studies of Necturus antral mucosa. II. Equivalent circuit analysis.
    Ashley SW; Soybel DI; De L; Cheung LY
    Am J Physiol; 1985 May; 248(5 Pt 1):G574-9. PubMed ID: 3993785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water and nonelectrolyte permeabilities of apical membranes of toad urinary bladder granular cells.
    Grossman EB; Harris HW; Star RA; Zeidel ML
    Am J Physiol; 1992 May; 262(5 Pt 1):C1109-18. PubMed ID: 1590353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Basic electrical properties of tight epithelia determined with a simple method.
    Erlij D
    Pflugers Arch; 1976 Jun; 364(1):91-3. PubMed ID: 822395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of K+ conductance in basolateral membrane of toad urinary bladder by oxytocin and cAMP.
    Van Driessche W; Erlij D
    Am J Physiol; 1988 Jun; 254(6 Pt 1):C816-21. PubMed ID: 2837095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antidiuretic hormone-dependent membrane capacitance and water permeability in the toad urinary bladder.
    Palmer LG; Lorenzen M
    Am J Physiol; 1983 Feb; 244(2):F195-204. PubMed ID: 6401935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of toad bladder urinary acidification.
    Silveira JE; Perez SE; Cirne BR; Steinmetz PR
    Braz J Med Biol Res; 1989; 22(9):1163-70. PubMed ID: 2561461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular microelectrode studies of Necturus antral mucosa. Effect of aspirin on cell membrane potentials.
    Cheung LY; De L; Ashley SW
    Gastroenterology; 1985 Jan; 88(1 Pt 2):261-8. PubMed ID: 3964776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual effects of amphotericin B on ion permeation in toad urinary bladder epithelium.
    Reuss L; Gatzy JT; Finn AL
    Am J Physiol; 1978 Nov; 235(5):F507-14. PubMed ID: 103440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ca2+ entry through the apical membrane reduces antidiuretic hormone-induced hydroosmotic response in toad urinary bladder.
    Van Driessche W; Erlij D; Aelvoet I
    Pflugers Arch; 1990 Nov; 417(3):342-8. PubMed ID: 2177187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques.
    O'Neil RG; Sansom SC
    Am J Physiol; 1984 Jul; 247(1 Pt 2):F14-24. PubMed ID: 6331197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of bidirectional active sodium fluxes in the toad bladder.
    Wolff D; Essig A
    Biochim Biophys Acta; 1977 Jul; 468(2):271-83. PubMed ID: 406919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chloride transport in rabbit esophageal epithelial cells.
    Abdulnour-Nakhoul S; Nakhoul NL; Caymaz-Bor C; Orlando RC
    Am J Physiol Gastrointest Liver Physiol; 2002 Apr; 282(4):G663-75. PubMed ID: 11897626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of saline exposure on the response of toad bladder (Bufo marinus) to aldosterone.
    Snart RS; Wheldrake JF
    Biochim Biophys Acta; 1980 Aug; 631(1):104-11. PubMed ID: 6772236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Voltage dependence of the blocking rate constants of amiloride at apical Na channels.
    Warncke J; Lindemann B
    Pflugers Arch; 1985; 405 Suppl 1():S89-94. PubMed ID: 2418409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.