These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 17756431)

  • 1. Molecular dynamics simulations of dimer opening on a diamond {001}(2x1) surface.
    Garrison BJ; Dawnkaski EJ; Srivastava D; Brenner DW
    Science; 1992 Feb; 255(5046):835-8. PubMed ID: 17756431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of carbon incorporation on the diamond [100] surface during chemical vapor deposition using density functional theory.
    Cheesman A; Harvey JN; Ashfold MN
    J Phys Chem A; 2008 Nov; 112(45):11436-48. PubMed ID: 18837545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial effect of C-H dipoles on the electron affinity of diamond (100)-2x1 adsorbed with organic molecules.
    Hoh HY; Loh KP; Sullivan MB; Wu P
    Chemphyschem; 2008 Jun; 9(9):1338-44. PubMed ID: 18491329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM.
    Gao G; Cannara RJ; Carpick RW; Harrison JA
    Langmuir; 2007 May; 23(10):5394-405. PubMed ID: 17407330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of molecular-dynamics simulation results using feedforward neural networks: reaction of a C2 dimer with an activated diamond (100) surface.
    Agrawal PM; Samadh AN; Raff LM; Hagan MT; Bukkapatnam ST; Komanduri R
    J Chem Phys; 2005 Dec; 123(22):224711. PubMed ID: 16375499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Monte Carlo simulations of surface growth during plasma deposition of silicon thin films.
    Pandey SC; Singh T; Maroudas D
    J Chem Phys; 2009 Jul; 131(3):034503. PubMed ID: 19624205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of the interactions between platinum clusters and carbon platelets.
    Sanz-Navarro CF; Astrand PO; Chen D; Rønning M; van Duin AC; Jacob T; Goddard WA
    J Phys Chem A; 2008 Feb; 112(7):1392-402. PubMed ID: 18217729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion of protein residues to substituted (111) diamond surfaces: an insight from density functional theory and classical molecular dynamics simulations.
    Borisenko KB; Reavy HJ; Zhao Q; Abel EW
    J Biomed Mater Res A; 2008 Sep; 86(4):1113-21. PubMed ID: 18080307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of large nitrate-water clusters at ambient temperatures: simulations with effective fragment potentials and force fields with implications for atmospheric chemistry.
    Miller Y; Thomas JL; Kemp DD; Finlayson-Pitts BJ; Gordon MS; Tobias DJ; Gerber RB
    J Phys Chem A; 2009 Nov; 113(46):12805-14. PubMed ID: 19817362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of peptide-surface interactions.
    Raut VP; Agashe MA; Stuart SJ; Latour RA
    Langmuir; 2005 Feb; 21(4):1629-39. PubMed ID: 15697318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force-based analysis of multidimensional energy landscapes: application of dynamic force spectroscopy and steered molecular dynamics simulations to an antibody fragment-peptide complex.
    Morfill J; Neumann J; Blank K; Steinbach U; Puchner EM; Gottschalk KE; Gaub HE
    J Mol Biol; 2008 Sep; 381(5):1253-66. PubMed ID: 18619976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules.
    Hamelberg D; Mongan J; McCammon JA
    J Chem Phys; 2004 Jun; 120(24):11919-29. PubMed ID: 15268227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphiphilic character and aggregation properties of small cholesterol islands on water: a simulation study.
    Cromie SR; Del Pópolo MG; Ballone P
    J Phys Chem B; 2009 Apr; 113(14):4674-87. PubMed ID: 19275206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of surface dimer dynamics in creating ordered organic-semiconductor interfaces.
    Hayes RL; Tuckerman ME
    J Am Chem Soc; 2007 Oct; 129(40):12172-80. PubMed ID: 17880070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation.
    Chenoweth K; van Duin AC; Goddard WA
    J Phys Chem A; 2008 Feb; 112(5):1040-53. PubMed ID: 18197648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study of the structure of the liquid Ga-diamond (111) interface.
    Jiang X; Rice SA
    J Chem Phys; 2005 Sep; 123(10):104703. PubMed ID: 16178614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic molecular dynamics simulations of chemical force microscopy.
    Patrick DL; Flanagan JF; Kohl P; Lynden-Bell RM
    J Am Chem Soc; 2003 Jun; 125(22):6762-73. PubMed ID: 12769587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.