These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17760982)

  • 41. Enhanced partial order curve comparison over multiple protein folding trajectories.
    Sun H; Ferhatosmanoglu H; Ota M; Wang Y
    Comput Syst Bioinformatics Conf; 2007; 6():299-310. PubMed ID: 17951833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling protein loops with knowledge-based prediction of sequence-structure alignment.
    Peng HP; Yang AS
    Bioinformatics; 2007 Nov; 23(21):2836-42. PubMed ID: 17827204
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ensemble classifier for protein fold pattern recognition.
    Shen HB; Chou KC
    Bioinformatics; 2006 Jul; 22(14):1717-22. PubMed ID: 16672258
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and visualization of cage-shaped proteins.
    Hu M; Wang J; Peng Q
    Bioinformatics; 2007 Dec; 23(24):3400-2. PubMed ID: 17921173
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of functional subclasses in the DJ-1 superfamily proteins.
    Wei Y; Ringe D; Wilson MA; Ondrechen MJ
    PLoS Comput Biol; 2007 Jan; 3(1):e10. PubMed ID: 17257049
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Towards a structural classification of phosphate binding sites in protein-nucleotide complexes: an automated all-against-all structural comparison using geometric matching.
    Brakoulias A; Jackson RM
    Proteins; 2004 Aug; 56(2):250-60. PubMed ID: 15211509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. K-Fold: a tool for the prediction of the protein folding kinetic order and rate.
    Capriotti E; Casadio R
    Bioinformatics; 2007 Feb; 23(3):385-6. PubMed ID: 17138584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effective labeling of molecular surface points for cavity detection and location of putative binding sites.
    Bock ME; Garutti C; Guerra C
    Comput Syst Bioinformatics Conf; 2007; 6():263-74. PubMed ID: 17951830
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein classification using comparative molecular interaction profile analysis system.
    Hayashi Y; Kobayashi M; Sakaguchi K; Iwata N; Kobayashi M; Kikuchi Y; Takahashi Y
    J Bioinform Comput Biol; 2004 Sep; 2(3):497-510. PubMed ID: 15359423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extraction, quantification and visualization of protein pockets.
    Zhang X; Bajaj C
    Comput Syst Bioinformatics Conf; 2007; 6():275-86. PubMed ID: 17951831
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A framework for protein structure classification and identification of novel protein structures.
    Kim YJ; Patel JM
    BMC Bioinformatics; 2006 Oct; 7():456. PubMed ID: 17042958
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction.
    Wu S; Zhang Y
    Bioinformatics; 2008 Apr; 24(7):924-31. PubMed ID: 18296462
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Classification of proteins based on the properties of the ligand-binding site: the case of adenine-binding proteins.
    Cappello V; Tramontano A; Koch U
    Proteins; 2002 May; 47(2):106-15. PubMed ID: 11933058
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A coarse-grained Langevin molecular dynamics approach to de novo protein structure prediction.
    Sasaki TN; Cetin H; Sasai M
    Biochem Biophys Res Commun; 2008 May; 369(2):500-6. PubMed ID: 18294960
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of function-associated loop motifs and application to protein function prediction.
    Espadaler J; Querol E; Aviles FX; Oliva B
    Bioinformatics; 2006 Sep; 22(18):2237-43. PubMed ID: 16870939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automatic classification of protein structures relying on similarities between alignments.
    Santini G; Soldano H; Pothier J
    BMC Bioinformatics; 2012 Sep; 13():233. PubMed ID: 22974051
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using structural motif descriptors for sequence-based binding site prediction.
    Henschel A; Winter C; Kim WK; Schroeder M
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S5. PubMed ID: 17570148
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fast and accurate multi-class protein fold recognition with spatial sample kernels.
    Kuksa P; Huang PH; Pavlovic V
    Comput Syst Bioinformatics Conf; 2008; 7():133-43. PubMed ID: 19642275
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CPSP-tools--exact and complete algorithms for high-throughput 3D lattice protein studies.
    Mann M; Will S; Backofen R
    BMC Bioinformatics; 2008 May; 9():230. PubMed ID: 18462492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accurate prediction of peptide binding sites on protein surfaces.
    Petsalaki E; Stark A; GarcĂ­a-Urdiales E; Russell RB
    PLoS Comput Biol; 2009 Mar; 5(3):e1000335. PubMed ID: 19325869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.