BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17761000)

  • 1. Modeling gene expression regulatory networks with the sparse vector autoregressive model.
    Fujita A; Sato JR; Garay-Malpartida HM; Yamaguchi R; Miyano S; Sogayar MC; Ferreira CE
    BMC Syst Biol; 2007 Aug; 1():39. PubMed ID: 17761000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling nonlinear gene regulatory networks from time series gene expression data.
    Fujita A; Sato JR; Garay-Malpartida HM; Sogayar MC; Ferreira CE; Miyano S
    J Bioinform Comput Biol; 2008 Oct; 6(5):961-79. PubMed ID: 18942161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method.
    Fujita A; Sato JR; Garay-Malpartida HM; Morettin PA; Sogayar MC; Ferreira CE
    Bioinformatics; 2007 Jul; 23(13):1623-30. PubMed ID: 17463021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of building gene regulatory networks with sparse autoregressive models.
    Rajapakse JC; Mundra PA
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S17. PubMed ID: 22373004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene regulatory network discovery using pairwise Granger causality.
    Tam GH; Chang C; Hung YS
    IET Syst Biol; 2013 Oct; 7(5):195-204. PubMed ID: 24067420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mAPC-GibbsOS: an integrated approach for robust identification of gene regulatory networks.
    Shi X; Gu J; Chen X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Syst Biol; 2013; 7 Suppl 5(Suppl 5):S4. PubMed ID: 24564939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recursive regularization for inferring gene networks from time-course gene expression profiles.
    Shimamura T; Imoto S; Yamaguchi R; Fujita A; Nagasaki M; Miyano S
    BMC Syst Biol; 2009 Apr; 3():41. PubMed ID: 19386091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factor analysis for gene regulatory networks and transcription factor activity profiles.
    Pournara I; Wernisch L
    BMC Bioinformatics; 2007 Feb; 8():61. PubMed ID: 17319944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of nonlinear gene regulatory networks via L1 regularized NVAR from time series gene expression data.
    Kojima K; Fujita A; Shimamura T; Imoto S; Miyano S
    Genome Inform; 2008; 20():37-51. PubMed ID: 19425121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene regulatory network clustering for graph layout based on microarray gene expression data.
    Kojima K; Imoto S; Nagasaki M; Miyano S
    Genome Inform; 2010; 24():84-95. PubMed ID: 22081591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collocation-based sparse estimation for constructing dynamic gene networks.
    Shimamura T; Imoto S; Nagasaki M; Yamauchi M; Yamaguchi R; Fujita A; Tamada Y; Gotoh N; Miyano S
    Genome Inform; 2010; 24():164-78. PubMed ID: 22081598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tutorial to identify nonlinear associations in gene expression time series data.
    Fujita A; Miyano S
    Methods Mol Biol; 2014; 1164():87-95. PubMed ID: 24927837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
    Cai X; Bazerque JA; Giannakis GB
    PLoS Comput Biol; 2013; 9(5):e1003068. PubMed ID: 23717196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks.
    Kim CS
    BMC Bioinformatics; 2007 Jul; 8():251. PubMed ID: 17626641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A duplication growth model of gene expression networks.
    Bhan A; Galas DJ; Dewey TG
    Bioinformatics; 2002 Nov; 18(11):1486-93. PubMed ID: 12424120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An information theoretic method for reconstructing local regulatory network modules from polymorphic samples.
    Jagalur M; Kulp D
    Comput Syst Bioinformatics Conf; 2007; 6():133-43. PubMed ID: 17951819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heuristic approach to sparse approximation of gene regulatory networks.
    Andrecut M; Huang S; Kauffman SA
    J Comput Biol; 2008 Nov; 15(9):1173-86. PubMed ID: 18844584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.