These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 17761000)

  • 41. Grouped graphical Granger modeling for gene expression regulatory networks discovery.
    Lozano AC; Abe N; Liu Y; Rosset S
    Bioinformatics; 2009 Jun; 25(12):i110-8. PubMed ID: 19477976
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inferring latent gene regulatory network kinetics.
    González J; Vujačić I; Wit E
    Stat Appl Genet Mol Biol; 2013 Mar; 12(1):109-27. PubMed ID: 23744300
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Boolean networks using the chi-square test for inferring large-scale gene regulatory networks.
    Kim H; Lee JK; Park T
    BMC Bioinformatics; 2007 Feb; 8():37. PubMed ID: 17270045
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stochastic dynamic modeling of short gene expression time-series data.
    Wang Z; Yang F; Ho DW; Swift S; Tucker A; Liu X
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):44-55. PubMed ID: 18334455
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations.
    Buetti-Dinh A; Herold M; Christel S; El Hajjami M; Delogu F; Ilie O; Bellenberg S; Wilmes P; Poetsch A; Sand W; Vera M; Pivkin IV; Friedman R; Dopson M
    BMC Bioinformatics; 2020 Jan; 21(1):23. PubMed ID: 31964336
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inferring Boolean networks with perturbation from sparse gene expression data: a general model applied to the interferon regulatory network.
    Yu L; Watterson S; Marshall S; Ghazal P
    Mol Biosyst; 2008 Oct; 4(10):1024-30. PubMed ID: 19082142
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of gene regulatory networks from time course gene expression data.
    Wu FX; Liu LZ; Xia ZH
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():795-8. PubMed ID: 21096112
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcription regulatory networks in Caenorhabditis elegans inferred through reverse-engineering of gene expression profiles constitute biological hypotheses for metazoan development.
    Vermeirssen V; Joshi A; Michoel T; Bonnet E; Casneuf T; Van de Peer Y
    Mol Biosyst; 2009 Dec; 5(12):1817-30. PubMed ID: 19763340
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An approach for reduction of false predictions in reverse engineering of gene regulatory networks.
    Khan A; Saha G; Pal RK
    J Theor Biol; 2018 May; 445():9-30. PubMed ID: 29462626
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sparse factor model for co-expression networks with an application using prior biological knowledge.
    Blum Y; Houée-Bigot M; Causeur D
    Stat Appl Genet Mol Biol; 2016 Jun; 15(3):253-72. PubMed ID: 27166726
    [TBL] [Abstract][Full Text] [Related]  

  • 52. IRIS: a method for reverse engineering of regulatory relations in gene networks.
    Morganella S; Zoppoli P; Ceccarelli M
    BMC Bioinformatics; 2009 Dec; 10():444. PubMed ID: 20030818
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of single and module-based methods for modeling gene regulatory networks.
    Hernaez M; Blatti C; Gevaert O
    Bioinformatics; 2020 Jan; 36(2):558-567. PubMed ID: 31287491
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process.
    Opgen-Rhein R; Strimmer K
    BMC Bioinformatics; 2007 May; 8 Suppl 2(Suppl 2):S3. PubMed ID: 17493252
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks.
    Husmeier D
    Bioinformatics; 2003 Nov; 19(17):2271-82. PubMed ID: 14630656
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities.
    Fu Y; Jarboe LR; Dickerson JA
    BMC Bioinformatics; 2011 Jun; 12():233. PubMed ID: 21668997
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling microRNA-mRNA interactions using PLS regression in human colon cancer.
    Li X; Gill R; Cooper NG; Yoo JK; Datta S
    BMC Med Genomics; 2011 May; 4():44. PubMed ID: 21595958
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inference of sparse combinatorial-control networks from gene-expression data: a message passing approach.
    Bailly-Bechet M; Braunstein A; Pagnani A; Weigt M; Zecchina R
    BMC Bioinformatics; 2010 Jun; 11():355. PubMed ID: 20587029
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks.
    Michoel T; De Smet R; Joshi A; Van de Peer Y; Marchal K
    BMC Syst Biol; 2009 May; 3():49. PubMed ID: 19422680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.