BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17761188)

  • 1. Electroosmotic transport through rectangular channels with small zeta potentials.
    Dutta D
    J Colloid Interface Sci; 2007 Nov; 315(2):740-6. PubMed ID: 17761188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetic transport of charged samples through rectangular channels with small zeta potentials.
    Dutta D
    Anal Chem; 2008 Jun; 80(12):4723-30. PubMed ID: 18476719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Channel Sidewalls on Joule Heating Induced Sample Dispersion in Rectangular Ducts.
    Dutta D
    Int J Heat Mass Transf; 2016 Feb; 93():529-537. PubMed ID: 26597437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of charged samples in fluidic channels with large zeta potentials.
    Dutta D
    Electrophoresis; 2007 Dec; 28(24):4552-60. PubMed ID: 18072222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic dispersion due to combined pressure-driven and electroosmotic flow through microchannels with a thin double layer.
    Zholkovskij EK; Masliyah JH
    Anal Chem; 2004 May; 76(10):2708-18. PubMed ID: 15144179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-transport analysis for particulate packings in trapezoidal microchip separation channels.
    Khirevich S; Höltzel A; Hlushkou D; Seidel-Morgenstern A; Tallarek U
    Lab Chip; 2008 Nov; 8(11):1801-8. PubMed ID: 18941678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory.
    Datta S; Ghosal S; Patankar NA
    Electrophoresis; 2006 Feb; 27(3):611-9. PubMed ID: 16456890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroosmotic fluid motion and late-time solute transport for large zeta potentials.
    Griffiths SK; Nilson RH
    Anal Chem; 2000 Oct; 72(20):4767-77. PubMed ID: 11055689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
    Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH
    J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Starting electroosmotic flow in an annulus and in a rectangular channel.
    Chang CC; Wang CY
    Electrophoresis; 2008 Jul; 29(14):2970-9. PubMed ID: 18655036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroosmotic flow in a capillary annulus with high zeta potentials.
    Kang Y; Yang C; Huang X
    J Colloid Interface Sci; 2002 Sep; 253(2):285-94. PubMed ID: 16290861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersion in large aspect ratio microchannels for open-channel liquid chromatography.
    Dutta D; Leighton DT
    Anal Chem; 2003 Jan; 75(1):57-70. PubMed ID: 12530819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic control of the interface between two liquids flowing through a horizontal or vertical microchannel.
    Stiles PJ; Fletcher DF
    Lab Chip; 2004 Apr; 4(2):121-4. PubMed ID: 15052351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation and theory of the diffusion- and flow-induced concentration dispersion in microfluidic devices and HPLC systems based on rectangular microchannels.
    Morf WE; van der Wal PD; de Rooij NF
    Anal Chim Acta; 2008 Aug; 622(1-2):175-81. PubMed ID: 18602550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of conduit geometry and bed porosity on flow and dispersion in noncylindrical sphere packings.
    Khirevich S; Höltzel A; Hlushkou D; Tallarek U
    Anal Chem; 2007 Dec; 79(24):9340-9. PubMed ID: 17985846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Debye-Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels.
    Conlisk AT
    Electrophoresis; 2005 May; 26(10):1896-912. PubMed ID: 15832301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary electroviscous effect in a dilute suspension of charged mercury drops.
    Ohshima H
    Langmuir; 2006 Mar; 22(6):2863-9. PubMed ID: 16519496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eccentric electrophoretic motion of a rectangular particle in a rectangular microchannel.
    Li D; Daghighi Y
    J Colloid Interface Sci; 2010 Feb; 342(2):638-42. PubMed ID: 19944427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetics in nanochannels: part I. Electric double layer overlap and channel-to-well equilibrium.
    Baldessari F; Santiago JG
    J Colloid Interface Sci; 2008 Sep; 325(2):526-38. PubMed ID: 18639883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels.
    Das S; Subramanian K; Chakraborty S
    Colloids Surf B Biointerfaces; 2007 Aug; 58(2):203-17. PubMed ID: 17481862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.