These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 17761196)
1. Structural basis for activation of fatty acid-binding protein 4. Gillilan RE; Ayers SD; Noy N J Mol Biol; 2007 Oct; 372(5):1246-60. PubMed ID: 17761196 [TBL] [Abstract][Full Text] [Related]
2. Continuous nucleocytoplasmic shuttling underlies transcriptional activation of PPARgamma by FABP4. Ayers SD; Nedrow KL; Gillilan RE; Noy N Biochemistry; 2007 Jun; 46(23):6744-52. PubMed ID: 17516629 [TBL] [Abstract][Full Text] [Related]
3. Concerted dynamic motions of an FABP4 model and its ligands revealed by microsecond molecular dynamics simulations. Li Y; Li X; Dong Z Biochemistry; 2014 Oct; 53(40):6409-17. PubMed ID: 25231537 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway. Armstrong EH; Goswami D; Griffin PR; Noy N; Ortlund EA J Biol Chem; 2014 May; 289(21):14941-54. PubMed ID: 24692551 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin. Lee CW; Kim JE; Do H; Kim RO; Lee SG; Park HH; Chang JH; Yim JH; Park H; Kim IC; Lee JH Biochem Biophys Res Commun; 2015 Sep; 465(1):12-8. PubMed ID: 26206084 [TBL] [Abstract][Full Text] [Related]
7. Solution-state molecular structure of apo and oleate-liganded liver fatty acid-binding protein. He Y; Yang X; Wang H; Estephan R; Francis F; Kodukula S; Storch J; Stark RE Biochemistry; 2007 Nov; 46(44):12543-56. PubMed ID: 17927211 [TBL] [Abstract][Full Text] [Related]
8. Adipocyte-type fatty acid-binding protein as inter-compartmental shuttle for peroxisome proliferator activated receptor gamma agonists in cultured cell. Adida A; Spener F Biochim Biophys Acta; 2006 Feb; 1761(2):172-81. PubMed ID: 16574478 [TBL] [Abstract][Full Text] [Related]
9. The structure of Apo-wild-type cellular retinoic acid binding protein II at 1.4 A and its relationship to ligand binding and nuclear translocation. Vaezeslami S; Mathes E; Vasileiou C; Borhan B; Geiger JH J Mol Biol; 2006 Oct; 363(3):687-701. PubMed ID: 16979656 [TBL] [Abstract][Full Text] [Related]
10. Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acid-binding protein: implications for the mechanism of ligand entry. Hodsdon ME; Cistola DP Biochemistry; 1997 Feb; 36(6):1450-60. PubMed ID: 9063893 [TBL] [Abstract][Full Text] [Related]
11. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4). González JM; Fisher SZ Acta Crystallogr F Struct Biol Commun; 2015 Feb; 71(Pt 2):163-70. PubMed ID: 25664790 [TBL] [Abstract][Full Text] [Related]
12. Fluorine-19 NMR studies on the acid state of the intestinal fatty acid binding protein. Li H; Frieden C Biochemistry; 2006 May; 45(20):6272-8. PubMed ID: 16700539 [TBL] [Abstract][Full Text] [Related]
13. A novel method for analysis of nuclear receptor function at natural promoters: peroxisome proliferator-activated receptor gamma agonist actions on aP2 gene expression detected using branched DNA messenger RNA quantitation. Burris TP; Pelton PD; Zhou L; Osborne MC; Cryan E; Demarest KT Mol Endocrinol; 1999 Mar; 13(3):410-7. PubMed ID: 10076998 [TBL] [Abstract][Full Text] [Related]
14. Effects of ligand binding on the association properties and conformation in solution of retinoic acid receptors RXR and RAR. Egea PF; Rochel N; Birck C; Vachette P; Timmins PA; Moras D J Mol Biol; 2001 Mar; 307(2):557-76. PubMed ID: 11254382 [TBL] [Abstract][Full Text] [Related]
15. Structure-guided design, synthesis and in vitro evaluation of a series of pyrazole-based fatty acid binding protein (FABP) 3 ligands. Beniyama Y; Matsuno K; Miyachi H Bioorg Med Chem Lett; 2013 Mar; 23(6):1662-6. PubMed ID: 23395658 [TBL] [Abstract][Full Text] [Related]
16. Selective binding of the fluorescent dye 1-anilinonaphthalene-8-sulfonic acid to peroxisome proliferator-activated receptor gamma allows ligand identification and characterization. Zorrilla S; Garzón B; Pérez-Sala D Anal Biochem; 2010 Apr; 399(1):84-92. PubMed ID: 20025845 [TBL] [Abstract][Full Text] [Related]
17. Contributions of the interdomain loop, amino terminus, and subunit interface to the ligand-facilitated dimerization of neurophysin: crystal structures and mutation studies of bovine neurophysin-I. Li X; Lee H; Wu J; Breslow E Protein Sci; 2007 Jan; 16(1):52-68. PubMed ID: 17192588 [TBL] [Abstract][Full Text] [Related]
18. Structural insight into the specific interaction between murine SHPS-1/SIRP alpha and its ligand CD47. Nakaishi A; Hirose M; Yoshimura M; Oneyama C; Saito K; Kuki N; Matsuda M; Honma N; Ohnishi H; Matozaki T; Okada M; Nakagawa A J Mol Biol; 2008 Jan; 375(3):650-60. PubMed ID: 18045614 [TBL] [Abstract][Full Text] [Related]
19. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein. Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325 [TBL] [Abstract][Full Text] [Related]
20. Peroxisome proliferator-activated receptor gamma (PPARγ) has multiple binding points that accommodate ligands in various conformations: Structurally similar PPARγ partial agonists bind to PPARγ LBD in different conformations. Ohashi M; Gamo K; Oyama T; Miyachi H Bioorg Med Chem Lett; 2015 Jul; 25(14):2758-62. PubMed ID: 26025876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]