BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 17761212)

  • 1. Abiotic reduction of antimony(V) by green rust (Fe(4)(II)Fe(2)(III)(OH)(12)SO(4).3H(2)O).
    Mitsunobu S; Takahashi Y; Sakai Y
    Chemosphere; 2008 Jan; 70(5):942-7. PubMed ID: 17761212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimony and arsenic partitioning during Fe
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite.
    Karimian N; Johnston SG; Burton ED
    Environ Sci Technol; 2017 Apr; 51(8):4259-4268. PubMed ID: 28347133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-dependence of selenate removal from liquid phase by reductive Fe(II)-Fe(III) hydroxysulfate compound, green rust.
    Hayashi H; Kanie K; Shinoda K; Muramatsu A; Suzuki S; Sasaki H
    Chemosphere; 2009 Jul; 76(5):638-43. PubMed ID: 19447467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of aqueous Fe(II) on Sb(V) sorption on soil and goethite.
    Fan JX; Wang YJ; Fan TT; Dang F; Zhou DM
    Chemosphere; 2016 Mar; 147():44-51. PubMed ID: 26761596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic(III) and arsenic(V) speciation during transformation of lepidocrocite to magnetite.
    Wang Y; Morin G; Ona-Nguema G; Brown GE
    Environ Sci Technol; 2014 Dec; 48(24):14282-90. PubMed ID: 25425339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of synthetic sulfate green rust with antimony(V).
    Mitsunobu S; Takahashi Y; Sakai Y; Inumaru K
    Environ Sci Technol; 2009 Jan; 43(2):318-23. PubMed ID: 19238958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and structural constraints of chromate reduction by green rusts.
    Bond DL; Fendorf S
    Environ Sci Technol; 2003 Jun; 37(12):2750-7. PubMed ID: 12854715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Cr(VI) reduction by carbonate green rust.
    Williams AG; Scherer MM
    Environ Sci Technol; 2001 Sep; 35(17):3488-94. PubMed ID: 11563651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of antimony from contaminated soil induced by redox changes.
    Hockmann K; Lenz M; Tandy S; Nachtegaal M; Janousch M; Schulin R
    J Hazard Mater; 2014 Jun; 275():215-21. PubMed ID: 24862348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. XAFS investigation of the interactions of U(VI) with secondary mineralization products from the bioreduction of Fe(III) oxides.
    O'Loughlin EJ; Kelly SD; Kemner KM
    Environ Sci Technol; 2010 Mar; 44(5):1656-61. PubMed ID: 20146462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of Ag(I), Au(III), Cu(II), and Hg(II) by Fe(II)/Fe(III) hydroxysulfate green rust.
    O'Loughlin EJ; Kelly SD; Kemner KM; Csencsits R; Cook RE
    Chemosphere; 2003 Nov; 53(5):437-46. PubMed ID: 12948527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides.
    Whitaker AH; Peña J; Amor M; Duckworth OW
    Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens.
    Xie J; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Lloyd JR
    Appl Environ Microbiol; 2023 Mar; 89(3):e0217522. PubMed ID: 36853045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of bound phosphate on the bioreduction of lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3) and formation of secondary minerals.
    O'Loughlin EJ; Boyanov MI; Flynn TM; Gorski CA; Hofmann SM; McCormick ML; Scherer MM; Kemner KM
    Environ Sci Technol; 2013 Aug; 47(16):9157-66. PubMed ID: 23909690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid.
    Tighe M; Lockwood P; Wilson S
    J Environ Monit; 2005 Dec; 7(12):1177-85. PubMed ID: 16307069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanogoethite formation from oxidation of Fe(II) sorbed on aluminum oxide: implications for contaminant reduction.
    Larese-Casanova P; Cwiertny DM; Scherer MM
    Environ Sci Technol; 2010 May; 44(10):3765-71. PubMed ID: 20408543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimony oxidation and adsorption by in-situ formed biogenic Mn oxide and Fe-Mn oxides.
    Bai Y; Jefferson WA; Liang J; Yang T; Qu J
    J Environ Sci (China); 2017 Apr; 54():126-134. PubMed ID: 28391920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green rust and iron oxide formation influences metolachlor dechlorination during zerovalent iron treatment.
    Satapanajaru T; Shea PJ; Comfort SD; Roh Y
    Environ Sci Technol; 2003 Nov; 37(22):5219-27. PubMed ID: 14655711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.