BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 17761303)

  • 21. Ligation and Reactivity of Methionine-Oxidized Cytochrome c.
    Zhong F; Pletneva EV
    Inorg Chem; 2018 May; 57(10):5754-5766. PubMed ID: 29708337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids.
    Jiang J; Bakan A; Kapralov AA; Ishara Silva K; Huang Z; Amoscato AA; Peterson J; Krishna Garapati V; Saxena S; Bayir H; Atkinson J; Bahar I; Kagan VE
    Free Radic Biol Med; 2014 Jun; 71():221-230. PubMed ID: 24631490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of cancer chemopreventive agents: oltipraz as a paradigm.
    Kensler TW; Groopman JD; Sutter TR; Curphey TJ; Roebuck BD
    Chem Res Toxicol; 1999 Feb; 12(2):113-26. PubMed ID: 10027787
    [No Abstract]   [Full Text] [Related]  

  • 24. Cancer chemopreventive oltipraz generates superoxide anion radical.
    Velayutham M; Villamena FA; Fishbein JC; Zweier JL
    Arch Biochem Biophys; 2005 Mar; 435(1):83-8. PubMed ID: 15680910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Marked difference in cytochrome c oxidation mediated by HO(*) and/or O(2)(*-) free radicals in vitro.
    Thariat J; Collin F; Marchetti C; Ahmed-Adrar NS; Vitrac H; Jore D; Gardes-Albert M
    Biochimie; 2008 Oct; 90(10):1442-51. PubMed ID: 18555026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the cancer chemopreventive potency of dithiolethione analogs of oltipraz.
    Roebuck BD; Curphey TJ; Li Y; Baumgartner KJ; Bodreddigari S; Yan J; Gange SJ; Kensler TW; Sutter TR
    Carcinogenesis; 2003 Dec; 24(12):1919-28. PubMed ID: 14555609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The "pro-apoptotic genies" get out of mitochondria: oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes.
    Kagan VE; Tyurina YY; Bayir H; Chu CT; Kapralov AA; Vlasova II; Belikova NA; Tyurin VA; Amoscato A; Epperly M; Greenberger J; Dekosky S; Shvedova AA; Jiang J
    Chem Biol Interact; 2006 Oct; 163(1-2):15-28. PubMed ID: 16797512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Compact Structure of Cytochrome c Trapped in a Lysine-Ligated State: Loop Refolding and Functional Implications of a Conformational Switch.
    Amacher JF; Zhong F; Lisi GP; Zhu MQ; Alden SL; Hoke KR; Madden DR; Pletneva EV
    J Am Chem Soc; 2015 Jul; 137(26):8435-49. PubMed ID: 26038984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox equilibration after one-electron reduction of cytochrome c oxidase: radical formation and a possible hydrogen relay mechanism.
    Ashe D; Alleyne T; Wilson M; Svistunenko D; Nicholls P
    Arch Biochem Biophys; 2014 Jul; 554():36-43. PubMed ID: 24811894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface-enhanced resonance Raman spectroscopy and spectroscopy study of redox-induced conformational equilibrium of cytochrome c adsorbed on DNA-modified metal electrode.
    Jiang X; Wang Y; Qu X; Dong S
    Biosens Bioelectron; 2006 Jul; 22(1):49-55. PubMed ID: 16414257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterolytic reduction of fatty acid hydroperoxides by cytochrome c/cardiolipin complexes: antioxidant function in mitochondria.
    Belikova NA; Tyurina YY; Borisenko G; Tyurin V; Samhan Arias AK; Yanamala N; Furtmüller PG; Klein-Seetharaman J; Obinger C; Kagan VE
    J Am Chem Soc; 2009 Aug; 131(32):11288-9. PubMed ID: 19627079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenylbutazone Oxidation via Cu,Zn-SOD Peroxidase Activity: An EPR Study.
    Aljuhani N; Whittal RM; Khan SR; Siraki AG
    Chem Res Toxicol; 2015 Jul; 28(7):1476-83. PubMed ID: 26090772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitroxide malonate methanofullerene as biomimetic model of interaction of nitroxide species with antioxidants.
    Melnikova NB; Korobko VM; Gulenova MV; Gubskaya VP; Fazlleeva GM; Zhiltsova OE; Kochetkov EN; Poddel'sky AI; Nuretdinov IA
    Colloids Surf B Biointerfaces; 2015 Dec; 136():314-22. PubMed ID: 26422596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protection of retinal pigment epithelial cells from oxidative damage by oltipraz, a cancer chemopreventive agent.
    Nelson KC; Armstrong JS; Moriarty S; Cai J; Wu MW; Sternberg P; Jones DP
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3550-4. PubMed ID: 12407167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein oxidation of cytochrome C by reactive halogen species enhances its peroxidase activity.
    Chen YR; Deterding LJ; Sturgeon BE; Tomer KB; Mason RP
    J Biol Chem; 2002 Aug; 277(33):29781-91. PubMed ID: 12050149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase 2 enzyme induction by the major metabolite of oltipraz.
    Petzer JP; Navamal M; Johnson JK; Kwak MK; Kensler TW; Fishbein JC
    Chem Res Toxicol; 2003 Nov; 16(11):1463-9. PubMed ID: 14615973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intermittent dosing with oltipraz: relationship between chemoprevention of aflatoxin-induced tumorigenesis and induction of glutathione S-transferases.
    Primiano T; Egner PA; Sutter TR; Kelloff GJ; Roebuck BD; Kensler TW
    Cancer Res; 1995 Oct; 55(19):4319-24. PubMed ID: 7671242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The hierarchy of structural transitions induced in cytochrome c by anionic phospholipids determines its peroxidase activation and selective peroxidation during apoptosis in cells.
    Kapralov AA; Kurnikov IV; Vlasova II; Belikova NA; Tyurin VA; Basova LV; Zhao Q; Tyurina YY; Jiang J; Bayir H; Vladimirov YA; Kagan VE
    Biochemistry; 2007 Dec; 46(49):14232-44. PubMed ID: 18004876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extractive solubilization, structural change, and functional conversion of cytochrome c in ionic liquids via crown ether complexation.
    Shimojo K; Kamiya N; Tani F; Naganawa H; Naruta Y; Goto M
    Anal Chem; 2006 Nov; 78(22):7735-42. PubMed ID: 17105166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-walled carbon nanotubes alter cytochrome c electron transfer and modulate mitochondrial function.
    Ma X; Zhang LH; Wang LR; Xue X; Sun JH; Wu Y; Zou G; Wu X; Wang PC; Wamer WG; Yin JJ; Zheng K; Liang XJ
    ACS Nano; 2012 Dec; 6(12):10486-96. PubMed ID: 23171082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.