These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1042 related articles for article (PubMed ID: 17761391)
1. Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Peng FY; Reid KE; Liao N; Schlosser J; Lijavetzky D; Holt R; Martínez Zapater JM; Jones S; Marra M; Bohlmann J; Lund ST Gene; 2007 Nov; 402(1-2):40-50. PubMed ID: 17761391 [TBL] [Abstract][Full Text] [Related]
2. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets. Tillett RL; Ergül A; Albion RL; Schlauch KA; Cramer GR; Cushman JC BMC Plant Biol; 2011 May; 11():86. PubMed ID: 21592389 [TBL] [Abstract][Full Text] [Related]
3. Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Chervin C; Tira-Umphon A; Terrier N; Zouine M; Severac D; Roustan JP Physiol Plant; 2008 Nov; 134(3):534-46. PubMed ID: 18785902 [TBL] [Abstract][Full Text] [Related]
4. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654 [TBL] [Abstract][Full Text] [Related]
5. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399 [TBL] [Abstract][Full Text] [Related]
7. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. Davies C; Shin R; Liu W; Thomas MR; Schachtman DP J Exp Bot; 2006; 57(12):3209-16. PubMed ID: 16936223 [TBL] [Abstract][Full Text] [Related]
8. A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. Mathieu S; Terrier N; Procureur J; Bigey F; Günata Z J Exp Bot; 2005 Oct; 56(420):2721-31. PubMed ID: 16131507 [TBL] [Abstract][Full Text] [Related]
9. Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. Hayes MA; Davies C; Dry IB J Exp Bot; 2007; 58(8):1985-97. PubMed ID: 17452752 [TBL] [Abstract][Full Text] [Related]
10. Myb-related genes of the Kyoho grape ( Vitis labruscana) regulate anthocyanin biosynthesis. Kobayashi S; Ishimaru M; Hiraoka K; Honda C Planta; 2002 Oct; 215(6):924-33. PubMed ID: 12355152 [TBL] [Abstract][Full Text] [Related]
11. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. Vincent D; Ergül A; Bohlman MC; Tattersall EA; Tillett RL; Wheatley MD; Woolsey R; Quilici DR; Joets J; Schlauch K; Schooley DA; Cushman JC; Cramer GR J Exp Bot; 2007; 58(7):1873-92. PubMed ID: 17443017 [TBL] [Abstract][Full Text] [Related]
12. Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation. Wu Q; Song J; Sun Y; Suo F; Li C; Luo H; Liu Y; Li Y; Zhang X; Yao H; Li X; Hu S; Sun C Physiol Plant; 2010 Feb; 138(2):134-49. PubMed ID: 19947964 [TBL] [Abstract][Full Text] [Related]
13. The alternative oxidase family of Vitis vinifera reveals an attractive model to study the importance of genomic design. Costa JH; de Melo DF; Gouveia Z; Cardoso HG; Peixe A; Arnholdt-Schmitt B Physiol Plant; 2009 Dec; 137(4):553-65. PubMed ID: 19682279 [TBL] [Abstract][Full Text] [Related]
14. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries. Bindon KA; Dry PR; Loveys BR J Agric Food Chem; 2007 May; 55(11):4493-500. PubMed ID: 17469842 [TBL] [Abstract][Full Text] [Related]
15. A grape berry (Vitis vinifera L.) cation/proton antiporter is associated with berry ripening. Hanana M; Cagnac O; Yamaguchi T; Hamdi S; Ghorbel A; Blumwald E Plant Cell Physiol; 2007 Jun; 48(6):804-11. PubMed ID: 17463051 [TBL] [Abstract][Full Text] [Related]
16. Grape berry plasma membrane proteome analysis and its differential expression during ripening. Zhang J; Ma H; Feng J; Zeng L; Wang Z; Chen S J Exp Bot; 2008; 59(11):2979-90. PubMed ID: 18550598 [TBL] [Abstract][Full Text] [Related]
18. White grapes arose through the mutation of two similar and adjacent regulatory genes. Walker AR; Lee E; Bogs J; McDavid DA; Thomas MR; Robinson SP Plant J; 2007 Mar; 49(5):772-85. PubMed ID: 17316172 [TBL] [Abstract][Full Text] [Related]
19. The parentage of a classic wine grape, Cabernet Sauvignon. Bowers JE; Meredith CP Nat Genet; 1997 May; 16(1):84-7. PubMed ID: 9140400 [TBL] [Abstract][Full Text] [Related]
20. Generation of a predicted protein database from EST data and application to iTRAQ analyses in grape (Vitis vinifera cv. Cabernet Sauvignon) berries at ripening initiation. Lücker J; Laszczak M; Smith D; Lund ST BMC Genomics; 2009 Jan; 10():50. PubMed ID: 19171055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]