These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17761439)

  • 1. Pial arteriolar vasomotion changes during cortical activation in rats.
    Vetri F; Menicucci D; Lapi D; Gemignani A; Colantuoni A
    Neuroimage; 2007 Oct; 38(1):25-33. PubMed ID: 17761439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of caffeine on cerebral blood flow response to somatosensory stimulation.
    Meno JR; Nguyen TS; Jensen EM; Alexander West G; Groysman L; Kung DK; Ngai AC; Britz GW; Winn HR
    J Cereb Blood Flow Metab; 2005 Jun; 25(6):775-84. PubMed ID: 15703695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous measurements of pial arteriolar diameter and laser-Doppler flow during somatosensory stimulation.
    Ngai AC; Meno JR; Winn HR
    J Cereb Blood Flow Metab; 1995 Jan; 15(1):124-7. PubMed ID: 7798330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of intrinsic optical signal, cerebral blood flow, and evoked potentials during activation of rat somatosensory cortex.
    Haglund MM; Meno JR; Hochman DW; Ngai AC; Winn HR
    J Neurosurg; 2008 Oct; 109(4):654-63. PubMed ID: 18826352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of shear and flow rates in pial arterioles during somatosensory stimulation.
    Ngai AC; Winn HR
    Am J Physiol; 1996 May; 270(5 Pt 2):H1712-7. PubMed ID: 8928878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of sympathetic and cholinergic influences on cerebral vasodilation caused by sciatic nerve stimulation in the rat.
    Ibayashi S; Ngai AC; Howard MA; Meno JR; Mayberg MR; Winn HR
    J Cereb Blood Flow Metab; 1991 Jul; 11(4):678-83. PubMed ID: 2050756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of sciatic nerve stimulation on pial arterioles in rats.
    Ngai AC; Ko KR; Morii S; Winn HR
    Am J Physiol; 1988 Jan; 254(1 Pt 2):H133-9. PubMed ID: 3337250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal activity-related coupling in cortical arterioles: involvement of astrocyte-derived factors.
    Lovick TA; Brown LA; Key BJ
    Exp Physiol; 2005 Jan; 90(1):131-40. PubMed ID: 15466455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex.
    Berwick J; Johnston D; Jones M; Martindale J; Redgrave P; McLoughlin N; Schiessl I; Mayhew JE
    Eur J Neurosci; 2005 Oct; 22(7):1655-66. PubMed ID: 16197506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of high-frequency (600 Hz) somatosensory-evoked potentials after rTMS of the primary sensory cortex.
    Restuccia D; Ulivelli M; De Capua A; Bartalini S; Rossi S
    Eur J Neurosci; 2007 Oct; 26(8):2349-58. PubMed ID: 17894818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of adenosine in regulation of regional cerebral blood flow in sensory cortex.
    Ko KR; Ngai AC; Winn HR
    Am J Physiol; 1990 Dec; 259(6 Pt 2):H1703-8. PubMed ID: 2260697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of stimulus properties on low- and high-frequency median nerve somatosensory evoked potentials.
    Gobbelé R; Dieckhöfer A; Thyerlei D; Buchner H; Waberski TD
    J Clin Neurophysiol; 2008 Aug; 25(4):194-201. PubMed ID: 18677183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Frequency Components in Rat Pial Arteriolar Rhythmic Diameter Changes.
    Lapi D; Mastantuono T; Di Maro M; Varanini M; Colantuoni A
    J Vasc Res; 2017; 54(6):344-358. PubMed ID: 29065409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuron synchronization in the rat gracilis nucleus facilitates sensory transmission in the somatosensory pathway.
    Malmierca E; Castellanos NP; Nuñez-Medina A; Makarov VA; Nuñez A
    Eur J Neurosci; 2009 Aug; 30(4):593-601. PubMed ID: 19686471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear interactions of high-frequency oscillations in the human somatosensory system.
    Jaros U; Hilgenfeld B; Lau S; Curio G; Haueisen J
    Clin Neurophysiol; 2008 Nov; 119(11):2647-57. PubMed ID: 18829382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociated effects of quiet stance on standard and high-frequency (600 Hz) lower limb somatosensory evoked potentials.
    Restuccia D; Micoli B; Cazzagon M; Fantinel R; Piero ID; Della Marca G
    Clin Neurophysiol; 2008 Jun; 119(6):1408-18. PubMed ID: 18378493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pial arteriole dilation during somatosensory stimulation is not mediated by an increase in CSF metabolites.
    Ngai AC; Winn HR
    Am J Physiol Heart Circ Physiol; 2002 Mar; 282(3):H902-7. PubMed ID: 11834485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP release and hydrolysis contribute to rat pial arteriolar dilatation elicited by neuronal activation.
    Xu HL; Pelligrino DA
    Exp Physiol; 2007 Jul; 92(4):647-51. PubMed ID: 17468204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Age-related changes of microcirculation in pia mater of rats' sensorimotor cortex].
    Sokolova IB; Sergeev IV; Fedotova OR; Dvoretskiĭ DP
    Adv Gerontol; 2013; 26(3):437-41. PubMed ID: 24640690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic metaplasticity in the human somatosensory cortex.
    Bliem B; Müller-Dahlhaus JF; Dinse HR; Ziemann U
    J Cogn Neurosci; 2008 Aug; 20(8):1517-28. PubMed ID: 18303976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.