These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 17761677)
1. A novel mechanism for substrate inhibition in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. Burton RL; Chen S; Xu XL; Grant GA J Biol Chem; 2007 Oct; 282(43):31517-24. PubMed ID: 17761677 [TBL] [Abstract][Full Text] [Related]
2. Role of the anion-binding site in catalysis and regulation of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. Burton RL; Chen S; Xu XL; Grant GA Biochemistry; 2009 Jun; 48(22):4808-15. PubMed ID: 19388702 [TBL] [Abstract][Full Text] [Related]
3. Structural analysis of substrate and effector binding in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. Dey S; Burton RL; Grant GA; Sacchettini JC Biochemistry; 2008 Aug; 47(32):8271-82. PubMed ID: 18627175 [TBL] [Abstract][Full Text] [Related]
4. Regulation of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase by phosphate-modulated quaternary structure dynamics and a potential role for polyphosphate in enzyme regulation. Xu XL; Grant GA Biochemistry; 2014 Jul; 53(26):4239-49. PubMed ID: 24956108 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Type 1 D-3-phosphoglycerate dehydrogenases reveals unique regulation in pathogenic Mycobacteria. Xu XL; Chen S; Salinas ND; Tolia NH; Grant GA Arch Biochem Biophys; 2015 Mar; 570():32-9. PubMed ID: 25698123 [TBL] [Abstract][Full Text] [Related]
6. Determinants of substrate specificity in D-3-phosphoglycerate dehydrogenase. Conversion of the M. tuberculosis enzyme from one that does not use α-ketoglutarate as a substrate to one that does. Xu XL; Grant GA Arch Biochem Biophys; 2019 Aug; 671():218-224. PubMed ID: 31344342 [TBL] [Abstract][Full Text] [Related]
7. Transient kinetic analysis of L-serine interaction with Escherichia coli D-3-phosphoglycerate dehydrogenase containing amino acid mutations in the hinge regions. Grant GA Biochemistry; 2011 Apr; 50(14):2900-6. PubMed ID: 21391703 [TBL] [Abstract][Full Text] [Related]
8. D-3-Phosphoglycerate dehydrogenase from Mycobacterium tuberculosis is a link between the Escherichia coli and mammalian enzymes. Dey S; Hu Z; Xu XL; Sacchettini JC; Grant GA J Biol Chem; 2005 Apr; 280(15):14884-91. PubMed ID: 15668250 [TBL] [Abstract][Full Text] [Related]
9. The effect of hinge mutations on effector binding and domain rotation in Escherichia coli D-3-phosphoglycerate dehydrogenase. Dey S; Hu Z; Xu XL; Sacchettini JC; Grant GA J Biol Chem; 2007 Jun; 282(25):18418-18426. PubMed ID: 17459882 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase: extreme asymmetry in a tetramer of identical subunits. Dey S; Grant GA; Sacchettini JC J Biol Chem; 2005 Apr; 280(15):14892-9. PubMed ID: 15668249 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the putative tryptophan synthase beta-subunit from Mycobacterium tuberculosis. Shen H; Yang Y; Wang F; Zhang Y; Ye N; Xu S; Wang H Acta Biochim Biophys Sin (Shanghai); 2009 May; 41(5):379-88. PubMed ID: 19430702 [TBL] [Abstract][Full Text] [Related]
12. Identification of amino acid residues contributing to the mechanism of cooperativity in Escherichia coli D-3-phosphoglycerate dehydrogenase. Grant GA; Hu Z; Xu XL Biochemistry; 2005 Dec; 44(51):16844-52. PubMed ID: 16363798 [TBL] [Abstract][Full Text] [Related]
13. Transient kinetic analysis of the interaction of L-serine with Escherichia coli D-3-phosphoglycerate dehydrogenase reveals the mechanism of V-type regulation and the order of effector binding. Burton RL; Chen S; Xu XL; Grant GA Biochemistry; 2009 Dec; 48(51):12242-51. PubMed ID: 19924905 [TBL] [Abstract][Full Text] [Related]
14. Crystal structures and kinetics of Type III 3-phosphoglycerate dehydrogenase reveal catalysis by lysine. Singh RK; Raj I; Pujari R; Gourinath S FEBS J; 2014 Dec; 281(24):5498-512. PubMed ID: 25294608 [TBL] [Abstract][Full Text] [Related]
15. Discovery of novel allosteric effectors based on the predicted allosteric sites for Escherichia coli D-3-phosphoglycerate dehydrogenase. Wang Q; Qi Y; Yin N; Lai L PLoS One; 2014; 9(4):e94829. PubMed ID: 24733054 [TBL] [Abstract][Full Text] [Related]
16. Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases. Grant GA Arch Biochem Biophys; 2012 Mar; 519(2):175-85. PubMed ID: 22023909 [TBL] [Abstract][Full Text] [Related]
17. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases. Zgiby SM; Thomson GJ; Qamar S; Berry A Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619 [TBL] [Abstract][Full Text] [Related]
19. Novel mutations in 3-phosphoglycerate dehydrogenase (PHGDH) are distributed throughout the protein and result in altered enzyme kinetics. Tabatabaie L; de Koning TJ; Geboers AJ; van den Berg IE; Berger R; Klomp LW Hum Mutat; 2009 May; 30(5):749-56. PubMed ID: 19235232 [TBL] [Abstract][Full Text] [Related]
20. Regulatory Mechanism of Mycobacterium tuberculosis Phosphoserine Phosphatase SerB2. Grant GA Biochemistry; 2017 Dec; 56(49):6481-6490. PubMed ID: 29140686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]