These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 17762268)
1. Effects of dexamethasone on the expression of transforming growth factor-beta in the mouse model of allergic rhinitis. Lee SS; Won TB; Kim JW; Rhee CS; Lee CH; Hong SC; Min YG Laryngoscope; 2007 Aug; 117(8):1323-8. PubMed ID: 17762268 [TBL] [Abstract][Full Text] [Related]
2. Comparison of topical dexamethasone and topical FK506 treatment for the experimental allergic conjunctivitis model in BALB/c mice. Shoji J; Sakimoto T; Muromoto K; Inada N; Sawa M; Ra C Jpn J Ophthalmol; 2005; 49(3):205-10. PubMed ID: 15944824 [TBL] [Abstract][Full Text] [Related]
3. The pathogenesis of nasal polyposis by immunoglobulin E and interleukin-5 is completed by transforming growth factor-beta1. Hirschberg A; Jókúti A; Darvas Z; Almay K; Répássy G; Falus A Laryngoscope; 2003 Jan; 113(1):120-4. PubMed ID: 12514394 [TBL] [Abstract][Full Text] [Related]
4. IL-16 variability and modulation by antiallergic drugs in a murine experimental allergic rhinitis model. Akiyama K; Karaki M; Kobayshi R; Dobashi H; Ishida T; Mori N Int Arch Allergy Immunol; 2009; 149(4):315-22. PubMed ID: 19295235 [TBL] [Abstract][Full Text] [Related]
5. Intranasal application of Epstein-Barr virus/lipoplex to abrogate eosinophillia in murine model of allergic rhinitis. Han DM; Zhou B; Wang T; Wang XD; Fan EZ Chin Med J (Engl); 2006 Jun; 119(12):991-7. PubMed ID: 16805982 [TBL] [Abstract][Full Text] [Related]
6. Establishment of an allergic rhinitis model in mice for the evaluation of nasal symptoms. Tsunematsu M; Yamaji T; Kozutsumi D; Murakami R; Kimura S; Kino K Life Sci; 2007 Mar; 80(15):1388-94. PubMed ID: 17300813 [TBL] [Abstract][Full Text] [Related]
7. Effects of minimal persistent inflammation on nasal mucosa of experimental allergic rhinitis. Lei F; Zhu D; Sun J; Dong Z Am J Rhinol Allergy; 2010; 24(1):e23-8. PubMed ID: 20109315 [TBL] [Abstract][Full Text] [Related]
8. Expression of growth factors by airway epithelial cells in a model of chronic asthma: regulation and relationship to subepithelial fibrosis. Kumar RK; Herbert C; Foster PS Clin Exp Allergy; 2004 Apr; 34(4):567-75. PubMed ID: 15080809 [TBL] [Abstract][Full Text] [Related]
9. Expression of uteroglobin in a murine model of allergic rhinitis. Won TB; Quan SH; Rhee CS; Min YG; Lee CH Acta Otolaryngol Suppl; 2007 Oct; (558):83-9. PubMed ID: 17882576 [TBL] [Abstract][Full Text] [Related]
10. Induction of airway remodeling of nasal mucosa by repetitive allergen challenge in a murine model of allergic rhinitis. Lim YS; Won TB; Shim WS; Kim YM; Kim JW; Lee CH; Min YG; Rhee CS Ann Allergy Asthma Immunol; 2007 Jan; 98(1):22-31. PubMed ID: 17225716 [TBL] [Abstract][Full Text] [Related]
11. Activin A is an acute allergen-responsive cytokine and provides a link to TGF-beta-mediated airway remodeling in asthma. Karagiannidis C; Hense G; Martin C; Epstein M; Rückert B; Mantel PY; Menz G; Uhlig S; Blaser K; Schmidt-Weber CB J Allergy Clin Immunol; 2006 Jan; 117(1):111-8. PubMed ID: 16387593 [TBL] [Abstract][Full Text] [Related]
12. Effect of Perilla frutescens var. acuta Kudo and rosmarinic acid on allergic inflammatory reactions. Oh HA; Park CS; Ahn HJ; Park YS; Kim HM Exp Biol Med (Maywood); 2011 Jan; 236(1):99-106. PubMed ID: 21239739 [TBL] [Abstract][Full Text] [Related]
13. Aggravation of bronchial eosinophilia in mice by nasal and bronchial exposure to Staphylococcus aureus enterotoxin B. Hellings PW; Hens G; Meyts I; Bullens D; Vanoirbeek J; Gevaert P; Jorissen M; Ceuppens JL; Bachert C Clin Exp Allergy; 2006 Aug; 36(8):1063-71. PubMed ID: 16911362 [TBL] [Abstract][Full Text] [Related]
14. Suppression of serum IgE response and systemic anaphylaxis in a food allergy model by orally administered high-dose TGF-beta. Okamoto A; Kawamura T; Kanbe K; Kanamaru Y; Ogawa H; Okumura K; Nakao A Int Immunol; 2005 Jun; 17(6):705-12. PubMed ID: 15837712 [TBL] [Abstract][Full Text] [Related]
15. Effects of RNA interference targeting transforming growth factor-beta 1 on immune hepatic fibrosis induced by Concanavalin A in mice. Xu W; Wang LW; Shi JZ; Gong ZJ Hepatobiliary Pancreat Dis Int; 2009 Jun; 8(3):300-8. PubMed ID: 19502172 [TBL] [Abstract][Full Text] [Related]
16. An essential role for dendritic cells in human and experimental allergic rhinitis. KleinJan A; Willart M; van Rijt LS; Braunstahl GJ; Leman K; Jung S; Hoogsteden HC; Lambrecht BN J Allergy Clin Immunol; 2006 Nov; 118(5):1117-25. PubMed ID: 17088138 [TBL] [Abstract][Full Text] [Related]
18. The effect of Bacillus Calmette-Guerin in a mouse model of allergic rhinitis. Kim SW; Yeo SW Otolaryngol Head Neck Surg; 2007 May; 136(5):720-5. PubMed ID: 17478204 [TBL] [Abstract][Full Text] [Related]
19. Role of NOD1-mediated signals in a mouse model of allergic rhinitis. Shin JH; Kim SW; Park YS Otolaryngol Head Neck Surg; 2012 Dec; 147(6):1020-6. PubMed ID: 23032918 [TBL] [Abstract][Full Text] [Related]
20. Nasal mucosal immunoexpression of the mast cell chemoattractants TGF-beta, eotaxin, and stem cell factor and their receptors in allergic rhinitis. Salib RJ; Kumar S; Wilson SJ; Howarth PH J Allergy Clin Immunol; 2004 Oct; 114(4):799-806. PubMed ID: 15480318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]