These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 17762794)

  • 61. Intraglottal geometry and velocity measurements in canine larynges.
    Oren L; Khosla S; Gutmark E
    J Acoust Soc Am; 2014 Jan; 135(1):380-8. PubMed ID: 24437778
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis.
    Fulcher LP; Scherer RC; Zhai G; Zhu Z
    J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx.
    Slavit DH; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Receiver operating characteristic analysis of aerodynamic parameters obtained by airflow interruption: a preliminary report.
    Jiang J; Stern J
    Ann Otol Rhinol Laryngol; 2004 Dec; 113(12):961-6. PubMed ID: 15633898
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Vocal fold collision threshold pressure: An alternative to phonation threshold pressure?
    Enflo L; Sundberg J
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):210-7. PubMed ID: 19916893
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; HertegÄrd S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.
    Kucinschi BR; Scherer RC; DeWitt KJ; Ng TT
    J Biomech Eng; 2006 Jun; 128(3):380-90. PubMed ID: 16706587
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Lubrication mechanism of the larynx during phonation: an experiment in excised canine larynges.
    Nakagawa H; Fukuda H; Kawaida M; Shiotani A; Kanzaki J
    Folia Phoniatr Logop; 1998; 50(4):183-94. PubMed ID: 9819480
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantitative Evaluation of the In Vivo Vocal Fold Medial Surface Shape.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    J Voice; 2017 Jul; 31(4):513.e15-513.e23. PubMed ID: 28089390
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Estimating subglottal pressure using incomplete airflow interruption.
    Jiang J; Leder C; Bichler A
    Laryngoscope; 2006 Jan; 116(1):89-92. PubMed ID: 16481816
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Survival in Vivo Canine Phonation Model Without Stimulation.
    Liu K; Ge P; Sheng X; Jiang J; Qin H
    Ann Otol Rhinol Laryngol; 2018 Mar; 127(3):178-184. PubMed ID: 29298508
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The role of the posterior cricoarytenoid muscle in phonation: an electromyographic investigation in dogs.
    Mu LC; Yang SL
    Laryngoscope; 1991 Aug; 101(8):849-54. PubMed ID: 1865733
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phonation threshold pressure measurements during phonation by airflow interruption.
    Jiang J; O'Mara T; Conley D; Hanson D
    Laryngoscope; 1999 Mar; 109(3):425-32. PubMed ID: 10089970
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High-speed video analysis of the phonation onset, with an application to the diagnosis of functional dysphonias.
    Braunschweig T; Flaschka J; Schelhorn-Neise P; Döllinger M
    Med Eng Phys; 2008 Jan; 30(1):59-66. PubMed ID: 17317268
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The effects of the false vocal fold gaps on intralaryngeal pressure distributions and their effects on phonation.
    Li S; Wan M; Wang S
    Sci China C Life Sci; 2008 Nov; 51(11):1045-51. PubMed ID: 18989648
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Parameters From the Complete Phonatory Range of an Excised Rabbit Larynx.
    Mills RD; Dodd K; Ablavsky A; Devine E; Jiang JJ
    J Voice; 2017 Jul; 31(4):517.e9-517.e17. PubMed ID: 28108153
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The effect of vocal fold adduction on the acoustic quality of phonation: ex vivo investigations.
    Regner MF; Tao C; Ying D; Olszewski A; Zhang Y; Jiang JJ
    J Voice; 2012 Nov; 26(6):698-705. PubMed ID: 22578437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.