These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 17763354)

  • 1. Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T.
    Zhao JM; Clingman CS; Närväinen MJ; Kauppinen RA; van Zijl PC
    Magn Reson Med; 2007 Sep; 58(3):592-7. PubMed ID: 17763354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla.
    Silvennoinen MJ; Clingman CS; Golay X; Kauppinen RA; van Zijl PC
    Magn Reson Med; 2003 Jan; 49(1):47-60. PubMed ID: 12509819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the blood oxygenation level dependent effect in cerebral blood volume-weighted functional MRI at 9.4T.
    Lu H; Scholl CA; Zuo Y; Stein EA; Yang Y
    Magn Reson Med; 2007 Sep; 58(3):616-21. PubMed ID: 17763339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution CMR(O2) mapping in rat cortex: a multiparametric approach to calibration of BOLD image contrast at 7 Tesla.
    Kida I; Kennan RP; Rothman DL; Behar KL; Hyder F
    J Cereb Blood Flow Metab; 2000 May; 20(5):847-60. PubMed ID: 10826536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes.
    Lee SP; Silva AC; Ugurbil K; Kim SG
    Magn Reson Med; 1999 Nov; 42(5):919-28. PubMed ID: 10542351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral blood oxygenation in rat brain during hypoxic hypoxia. Quantitative MRI of effective transverse relaxation rates.
    Prielmeier F; Nagatomo Y; Frahm J
    Magn Reson Med; 1994 Jun; 31(6):678-81. PubMed ID: 8057821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of parenchymal extravascular R2* and tissue oxygen extraction fraction using multi-echo vascular space occupancy MRI at 7 T.
    Cheng Y; van Zijl PC; Hua J
    NMR Biomed; 2015 Feb; 28(2):264-71. PubMed ID: 25521948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal undershoots following visual stimulation: a comparison of gradient and spin-echo BOLD sequences.
    Jones RA; Schirmer T; Lipinski B; Elbel GK; Auer DP
    Magn Reson Med; 1998 Jul; 40(1):112-8. PubMed ID: 9660561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal.
    Griffeth VE; Buxton RB
    Neuroimage; 2011 Sep; 58(1):198-212. PubMed ID: 21669292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing specificity in functional magnetic resonance imaging by estimation of vessel size based on changes in blood oxygenation.
    Jochimsen TH; Möller HE
    Neuroimage; 2008 Mar; 40(1):228-36. PubMed ID: 18248738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional MRI using spin lock editing preparation pulses.
    Rane S; Spear JT; Zu Z; Donahue MJ; Gore JC
    Magn Reson Imaging; 2014 Sep; 32(7):813-8. PubMed ID: 24848291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation.
    Zhao F; Wang P; Hendrich K; Ugurbil K; Kim SG
    Neuroimage; 2006 May; 30(4):1149-60. PubMed ID: 16414284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient relationships among BOLD, CBV, and CBF changes in rat brain as detected by functional MRI.
    Wu G; Luo F; Li Z; Zhao X; Li SJ
    Magn Reson Med; 2002 Dec; 48(6):987-93. PubMed ID: 12465108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental measurement of extravascular parenchymal BOLD effects and tissue oxygen extraction fractions using multi-echo VASO fMRI at 1.5 and 3.0 T.
    Lu H; van Zijl PC
    Magn Reson Med; 2005 Apr; 53(4):808-16. PubMed ID: 15799063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disparity of activation onset in sensory cortex from simultaneous auditory and visual stimulation: Differences between perfusion and blood oxygenation level-dependent functional magnetic resonance imaging.
    Liu HL; Feng CM; Li J; Su FC; Li N; Glahn D; Gao JH
    J Magn Reson Imaging; 2005 Feb; 21(2):111-7. PubMed ID: 15666409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
    Kim SG; Ogawa S
    J Cereb Blood Flow Metab; 2012 Jul; 32(7):1188-206. PubMed ID: 22395207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations.
    Simon AB; Dubowitz DJ; Blockley NP; Buxton RB
    Neuroimage; 2016 Apr; 129():198-213. PubMed ID: 26790354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of blood T(2) on oxygenation at 7 T: in vitro calibration and in vivo application.
    Krishnamurthy LC; Liu P; Xu F; Uh J; Dimitrov I; Lu H
    Magn Reson Med; 2014 Jun; 71(6):2035-42. PubMed ID: 23843129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects.
    Duong TQ; Yacoub E; Adriany G; Hu X; Ugurbil K; Kim SG
    Magn Reson Med; 2003 Jun; 49(6):1019-27. PubMed ID: 12768579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.