These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17763505)

  • 1. "Nanoions": fundamental properties and analytical applications of charged nanoparticles.
    Bishop KJ; Grzybowski BA
    Chemphyschem; 2007 Oct; 8(15):2171-6. PubMed ID: 17763505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic-like behavior of oppositely charged nanoparticles.
    Kalsin AM; Kowalczyk B; Smoukov SK; Klajn R; Grzybowski BA
    J Am Chem Soc; 2006 Nov; 128(47):15046-7. PubMed ID: 17117829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precipitation of oppositely charged nanoparticles by dilution and/or temperature increase.
    Bishop KJ; Kowalczyk B; Grzybowski BA
    J Phys Chem B; 2009 Feb; 113(5):1413-7. PubMed ID: 19132877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oppositely Charged Nanoparticles Precipitate Not Only at the Point of Overall Electroneutrality.
    Itatani M; Holló G; Zámbó D; Nakanishi H; Deák A; Lagzi I
    J Phys Chem Lett; 2023 Oct; 14(40):9003-9010. PubMed ID: 37782010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Existence of a Precipitation Threshold in the Electrostatic Precipitation of Oppositely Charged Nanoparticles.
    Nakanishi H; Deák A; Hólló G; Lagzi I
    Angew Chem Int Ed Engl; 2018 Dec; 57(49):16062-16066. PubMed ID: 30325100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liesegang rings engineered from charged nanoparticles.
    Lagzi I; Kowalczyk B; Grzybowski BA
    J Am Chem Soc; 2010 Jan; 132(1):58-60. PubMed ID: 20000717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatically "patchy" coatings via cooperative adsorption of charged nanoparticles.
    Smoukov SK; Bishop KJ; Kowalczyk B; Kalsin AM; Grzybowski BA
    J Am Chem Soc; 2007 Dec; 129(50):15623-30. PubMed ID: 18041837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studying the thermodynamics of surface reactions on nanoparticles by electrostatic titrations.
    Kalsin AM; Kowalczyk B; Wesson P; Paszewski M; Grzybowski BA
    J Am Chem Soc; 2007 May; 129(21):6664-5. PubMed ID: 17488007
    [No Abstract]   [Full Text] [Related]  

  • 9. Ion-specific forces between a colloidal nanoprobe and a charged surface.
    Lima ER; Biscaia EC; Boström M; Tavares FW
    Langmuir; 2007 Jul; 23(14):7456-8. PubMed ID: 17536847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of surface site distribution and dielectric discontinuity on the charging behavior of nanoparticles: a grand canonical Monte Carlo study.
    Seijo M; Ulrich S; Filella M; Buffle J; Stoll S
    Phys Chem Chem Phys; 2006 Dec; 8(48):5679-88. PubMed ID: 17149489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase behavior of mixtures of oppositely charged nanoparticles: heterogeneous Poisson-Boltzmann cell model applied to lysozyme and succinylated lysozyme.
    Biesheuvel PM; Lindhoud S; de Vries R; Cohen Stuart MA
    Langmuir; 2006 Jan; 22(3):1291-300. PubMed ID: 16430296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luminescence resonance energy transfer sensors based on the assemblies of oppositely charged lanthanide/gold nanoparticles in aqueous solution.
    Gu JQ; Sun LD; Yan ZG; Yan CH
    Chem Asian J; 2008 Oct; 3(10):1857-64. PubMed ID: 18726878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the cooperative adsorption of oppositely charged nanoparticles.
    Tretiakov KV; Bishop KJ; Kowalczyk B; Jaiswal A; Poggi MA; Grzybowski BA
    J Phys Chem A; 2009 Apr; 113(16):3799-803. PubMed ID: 19228008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter.
    Ghosh S; Mashayekhi H; Pan B; Bhowmik P; Xing B
    Langmuir; 2008 Nov; 24(21):12385-91. PubMed ID: 18823134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution, parallel patterning of nanoparticles via an ion-induced focusing mask.
    You S; Han K; Kim H; Lee H; Woo CG; Jeong C; Nam W; Choi M
    Small; 2010 Oct; 6(19):2146-52. PubMed ID: 20715075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the surface charge evolution of spherical nanoparticles by considering dielectric discontinuity effects at the solid/electrolyte solution interface.
    Seijo M; Ulrich S; Filella M; Buffle J; Stoll S
    J Colloid Interface Sci; 2008 Jun; 322(2):660-8. PubMed ID: 18387618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic Adsorption Behaviors of Charged Polymer-Tethered Nanoparticles on Oppositely Charged Surfaces.
    Shen X; Zhang Y; He H; Yi C; Dong W; Ye S; Zheng D; Tao J; Wu Q; Duan X; Nie Z
    Macromol Rapid Commun; 2022 Jul; 43(14):e2200171. PubMed ID: 35503906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile fabrication method and characterization of hollow Ag/SiO2 double-shelled spheres.
    Wang Z; Chen X; Chen M; Wu L
    Langmuir; 2009 Jul; 25(13):7646-51. PubMed ID: 19563232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexation between sodium dodecyl sulfate and amphoteric polyurethane nanoparticles.
    Qiao Y; Zhang S; Lin O; Deng L; Dong A
    J Phys Chem B; 2007 Sep; 111(38):11134-9. PubMed ID: 17803299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemodynamics of soft charged nanoparticles in aquatic media: fundamental concepts.
    Town RM; Buffle J; Duval JF; van Leeuwen HP
    J Phys Chem A; 2013 Aug; 117(33):7643-54. PubMed ID: 23806009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.