These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 17763856)

  • 1. Pulmonary nodule detection on MDCT images: evaluation of diagnostic performance using thin axial images, maximum intensity projections, and computer-assisted detection.
    Jankowski A; Martinelli T; Timsit JF; Brambilla C; Thony F; Coulomb M; Ferretti G
    Eur Radiol; 2007 Dec; 17(12):3148-56. PubMed ID: 17763856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of computer-aided detection system and thin-slab maximum intensity projection technique in the detection of pulmonary nodules in patients with resected metastases.
    Park EA; Goo JM; Lee JW; Kang CH; Lee HJ; Lee CH; Park CM; Lee HY; Im JG
    Invest Radiol; 2009 Feb; 44(2):105-13. PubMed ID: 19034026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images.
    Schalekamp S; van Ginneken B; Koedam E; Snoeren MM; Tiehuis AM; Wittenberg R; Karssemeijer N; Schaefer-Prokop CM
    Radiology; 2014 Jul; 272(1):252-61. PubMed ID: 24635675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of pulmonary nodules at paediatric CT: maximum intensity projections and axial source images are complementary.
    Kilburn-Toppin F; Arthurs OJ; Tasker AD; Set PA
    Pediatr Radiol; 2013 Jul; 43(7):820-6. PubMed ID: 23344916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided detection (CAD) in lung cancer screening at chest MDCT: ROC analysis of CAD versus radiologist performance.
    Fraioli F; Bertoletti L; Napoli A; Pediconi F; Calabrese FA; Masciangelo R; Catalano C; Passariello R
    J Thorac Imaging; 2007 Aug; 22(3):241-6. PubMed ID: 17721333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database.
    Jacobs C; van Rikxoort EM; Murphy K; Prokop M; Schaefer-Prokop CM; van Ginneken B
    Eur Radiol; 2016 Jul; 26(7):2139-47. PubMed ID: 26443601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of slab thickness on the CT detection of pulmonary nodules: use of sliding thin-slab maximum intensity projection and volume rendering.
    Kawel N; Seifert B; Luetolf M; Boehm T
    AJR Am J Roentgenol; 2009 May; 192(5):1324-9. PubMed ID: 19380557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of a computer-aided diagnosis (CAD) system with deep learning in detection of pulmonary nodules on 1-mm-thick images of computed tomography.
    Kozuka T; Matsukubo Y; Kadoba T; Oda T; Suzuki A; Hyodo T; Im S; Kaida H; Yagyu Y; Tsurusaki M; Matsuki M; Ishii K
    Jpn J Radiol; 2020 Nov; 38(11):1052-1061. PubMed ID: 32592003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection.
    Zheng S; Guo J; Cui X; Veldhuis RNJ; Oudkerk M; van Ooijen PMA
    IEEE Trans Med Imaging; 2020 Mar; 39(3):797-805. PubMed ID: 31425026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided detection of solid lung nodules on follow-up MDCT screening: evaluation of detection, tracking, and reading time.
    Beigelman-Aubry C; Raffy P; Yang W; Castellino RA; Grenier PA
    AJR Am J Roentgenol; 2007 Oct; 189(4):948-55. PubMed ID: 17885070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Multidetector-row CT of the lungs: Multiplanar reconstructions and maximum intensity projections for the detection of pulmonary nodules].
    Eibel R; Türk TR; Kulinna C; Herrmann K; Reiser MF
    Rofo; 2001 Sep; 173(9):815-21. PubMed ID: 11582561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum-Intensity-Projection and Computer-Aided-Detection Algorithms as Stand-Alone Reader Devices in Lung Cancer Screening Using Different Dose Levels and Reconstruction Kernels.
    Ebner L; Roos JE; Christensen JD; Dobrocky T; Leidolt L; Brela B; Obmann VC; Joy S; Huber A; Christe A
    AJR Am J Roentgenol; 2016 Aug; 207(2):282-8. PubMed ID: 27249174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved visualization of artificial pulmonary nodules with a new subvolume rendering technique.
    Abildgaard A; Karlsen JS; Heiberg L; Bosse G; Hol PK
    Acta Radiol; 2008 Sep; 49(7):761-8. PubMed ID: 19143062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy.
    Hirose T; Nitta N; Shiraishi J; Nagatani Y; Takahashi M; Murata K
    Acad Radiol; 2008 Dec; 15(12):1505-12. PubMed ID: 19000867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Computer-aided detection of lung nodules on thin collimation MDCT: impact on radiologists' performance].
    Brochu B; Beigelman-Aubry C; Goldmard JL; Raffy P; Grenier PA; Lucidarme O
    J Radiol; 2007 Apr; 88(4):573-8. PubMed ID: 17464256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-assisted detection of pulmonary nodules: performance evaluation of an expert knowledge-based detection system in consensus reading with experienced and inexperienced chest radiologists.
    Marten K; Seyfarth T; Auer F; Wiener E; Grillhösl A; Obenauer S; Rummeny EJ; Engelke C
    Eur Radiol; 2004 Oct; 14(10):1930-8. PubMed ID: 15235812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pulmonary nodules by computed tomography.
    Chen H; Wang XH; Ma DQ; Ma BR
    Chin Med J (Engl); 2007 Jul; 120(14):1211-5. PubMed ID: 17697569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of radiologist and CAD performance in the detection of CT-confirmed subtle pulmonary nodules on digital chest radiographs.
    Bley TA; Baumann T; Saueressig U; Pache G; Treier M; Schaefer O; Neitzel U; Langer M; Kotter E
    Invest Radiol; 2008 Jun; 43(6):343-8. PubMed ID: 18496038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based pulmonary nodule detection: Effect of slab thickness in maximum intensity projections at the nodule candidate detection stage.
    Zheng S; Cui X; Vonder M; Veldhuis RNJ; Ye Z; Vliegenthart R; Oudkerk M; van Ooijen PMA
    Comput Methods Programs Biomed; 2020 Nov; 196():105620. PubMed ID: 32615493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent ultralow dose chest CT - first in-vivo results at dose levels of 0.13mSv.
    Messerli M; Kluckert T; Knitel M; Rengier F; Warschkow R; Alkadhi H; Leschka S; Wildermuth S; Bauer RW
    Eur J Radiol; 2016 Dec; 85(12):2217-2224. PubMed ID: 27842670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.