These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17763985)

  • 1. Transformation of the kinematic characteristics of a precise movement after a change in a spatial task.
    Vasil'eva ON
    Neurosci Behav Physiol; 2007 Sep; 37(7):659-68. PubMed ID: 17763985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Transformation of kinematic characteristics of a precise movement after change in a spatial task].
    Vasil'eva ON
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2006; 56(5):618-28. PubMed ID: 17147203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Motor learning with the minimal involvement of visual afferentation].
    Vasil'eva ON; Baginskas A
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2003; 53(6):681-96. PubMed ID: 14959482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time course and temporal order of changes in movement kinematics during motor learning: effect of joint and instruction.
    Kempf T; Corcos DM; Flament D
    Exp Brain Res; 2001 Feb; 136(3):295-302. PubMed ID: 11243471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning a single limb multijoint coordination pattern: the impact of a mechanical constraint on the coordination dynamics of learning and transfer.
    Buchanan JJ
    Exp Brain Res; 2004 May; 156(1):39-54. PubMed ID: 14689134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle activation patterns in point-to-point and reversal movements in healthy, older subjects and in subjects with Parkinson's disease.
    Pfann KD; Robichaud JA; Gottlieb GL; Comella CL; Brandabur M; Corcos DM
    Exp Brain Res; 2004 Jul; 157(1):67-78. PubMed ID: 14991213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of task difficulty on muscle activation patterns during rapid single-joint movements.
    Park S
    Percept Mot Skills; 2002 Jun; 94(3 Pt 2):1157-67. PubMed ID: 12186237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold control of arm posture and movement adaptation to load.
    Foisy M; Feldman AG
    Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of movement segment difficulty on movements with two-stroke sequence.
    Rand MK; Alberts JL; Stelmach GE; Bloedel JR
    Exp Brain Res; 1997 Jun; 115(1):137-46. PubMed ID: 9224841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time course and temporal order of changes in movement kinematics during learning of fast and accurate elbow flexions.
    Flament D; Shapiro MB; Kempf T; Corcos DM
    Exp Brain Res; 1999 Dec; 129(3):441-50. PubMed ID: 10591915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning and transfer of a relative phase pattern and a joint amplitude ratio in a rhythmic multijoint arm movement.
    Buchanan JJ; Zihlman K; Ryu YU; Wright DL
    J Mot Behav; 2007 Jan; 39(1):49-67. PubMed ID: 17251171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practice and transfer effects during fast single-joint elbow movements in individuals with Down syndrome.
    Almeida GL; Corcos DM; Latash ML
    Phys Ther; 1994 Nov; 74(11):1000-12; discussion 1012-6. PubMed ID: 7972361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of concurrent physical and cognitive demands on arm movement kinematics in a repetitive upper-extremity precision task.
    Srinivasan D; Mathiassen SE; Samani A; Madeleine P
    Hum Mov Sci; 2015 Aug; 42():89-99. PubMed ID: 26024788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of arm movements for quick change of movement direction.
    Takatoku N; Fujiwara M
    J Mot Behav; 2014; 46(1):25-32. PubMed ID: 24164656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial properties of the arm are accurately predicted during motor imagery.
    Gentili R; Cahouet V; Ballay Y; Papaxanthis C
    Behav Brain Res; 2004 Dec; 155(2):231-9. PubMed ID: 15364482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of movement speed on accuracy and coordination of reaching movements to memorized targets in three-dimensional space in a deafferented subject.
    Messier J; Adamovich S; Berkinblit M; Tunik E; Poizner H
    Exp Brain Res; 2003 Jun; 150(4):399-416. PubMed ID: 12739083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction time and movement duration influence on end point accuracy in a fast reaching task.
    Skurvidas A; Mickevichiene D; Cesnavichiene V; Gutnik B; Nash D
    Fiziol Cheloveka; 2012; 38(3):73-80. PubMed ID: 22830246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.
    Suzuki M; Yamazaki Y
    J Comput Neurosci; 2005; 18(2):131-49. PubMed ID: 15714266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interjoint coordination dynamics during reaching in stroke.
    Cirstea MC; Mitnitski AB; Feldman AG; Levin MF
    Exp Brain Res; 2003 Aug; 151(3):289-300. PubMed ID: 12819841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Commonalities and differences in control of various drawing movements.
    Dounskaia N; Ketcham CJ; Stelmach GE
    Exp Brain Res; 2002 Sep; 146(1):11-25. PubMed ID: 12192573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.