These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 17764183)

  • 61. Light-driven formation and rupture of droplet bilayers.
    Dixit SS; Kim H; Vasilyev A; Eid A; Faris GW
    Langmuir; 2010 May; 26(9):6193-200. PubMed ID: 20361732
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Integrating Membrane Transporter Proteins into Droplet Interface Bilayers.
    Findlay HE; Harris NJ; Booth PJ
    Methods Mol Biol; 2021; 2315():31-41. PubMed ID: 34302668
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular organization in mixed SOPC and SDPC model membranes: Water permeability studies of polyunsaturated lipid bilayers.
    Foley S; Miller E; Braziel S; Lee S
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183365. PubMed ID: 32454009
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modeling ion transport in tethered bilayer lipid membranes. 1. Passive ion permeation.
    Robertson JW; Friedrich MG; Kibrom A; Knoll W; Naumann RL; Walz D
    J Phys Chem B; 2008 Aug; 112(34):10475-82. PubMed ID: 18680332
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhancing membrane-based soft materials with magnetic reconfiguration events.
    Makhoul-Mansour MM; El-Beyrouthy JB; Mao L; Freeman EC
    Sci Rep; 2022 Feb; 12(1):1703. PubMed ID: 35105905
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Rheological Droplet Interface Bilayers (rheo-DIBs): Probing the Unstirred Water Layer Effect on Membrane Permeability via Spinning Disk Induced Shear Stress.
    Barlow NE; Bolognesi G; Haylock S; Flemming AJ; Brooks NJ; Barter LMC; Ces O
    Sci Rep; 2017 Dec; 7(1):17551. PubMed ID: 29242597
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular dynamics simulation of the evolution of hydrophobic defects in one monolayer of a phosphatidylcholine bilayer: relevance for membrane fusion mechanisms.
    Tieleman DP; Bentz J
    Biophys J; 2002 Sep; 83(3):1501-10. PubMed ID: 12202375
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Activation of bacterial channel MscL in mechanically stimulated droplet interface bilayers.
    Najem JS; Dunlap MD; Rowe ID; Freeman EC; Grant JW; Sukharev S; Leo DJ
    Sci Rep; 2015 Sep; 5():13726. PubMed ID: 26348441
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Droplet shape analysis and permeability studies in droplet lipid bilayers.
    Dixit SS; Pincus A; Guo B; Faris GW
    Langmuir; 2012 May; 28(19):7442-51. PubMed ID: 22509902
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Arrayed water-in-oil droplet bilayers for membrane transport analysis.
    Watanabe R; Soga N; Hara M; Noji H
    Lab Chip; 2016 Aug; 16(16):3043-8. PubMed ID: 27080052
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Solvent-free coarse-grained lipid model for large-scale simulations.
    Noguchi H
    J Chem Phys; 2011 Feb; 134(5):055101. PubMed ID: 21303161
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Droplet immobilization within a polymeric organogel improves lipid bilayer durability and portability.
    Venkatesan GA; Sarles SA
    Lab Chip; 2016 May; 16(11):2116-25. PubMed ID: 27164314
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structure and dynamics of water at the interface with phospholipid bilayers.
    Bhide SY; Berkowitz ML
    J Chem Phys; 2005 Dec; 123(22):224702. PubMed ID: 16375490
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dynamic clustering of lipids in hydrated two-component membranes: results of computer modeling and putative biological impact.
    Pyrkova DV; Tarasova NK; Krylov NA; Nolde DE; Pentkovsky VM; Efremov RG
    J Biomol Struct Dyn; 2013; 31(1):87-95. PubMed ID: 22804614
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of Oil-Droplet Diameter on Lipid Oxidation in O/W Emulsions.
    Roppongi T; Miyagawa Y; Fujita H; Adachi S
    J Oleo Sci; 2021; 70(9):1225-1230. PubMed ID: 34483218
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Determining membrane capacitance by dynamic control of droplet interface bilayer area.
    Gross LC; Heron AJ; Baca SC; Wallace MI
    Langmuir; 2011 Dec; 27(23):14335-42. PubMed ID: 21978255
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers.
    Nisisako T; Portonovo SA; Schmidt JJ
    Analyst; 2013 Nov; 138(22):6793-800. PubMed ID: 24056299
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Investigating the effect of phospholipids on droplet formation and surface property evolution in microfluidic devices for droplet interface bilayer (DIB) formation.
    Stephenson EB; García Ramírez R; Farley S; Adolph-Hammond K; Lee G; Frostad JM; Elvira KS
    Biomicrofluidics; 2022 Jul; 16(4):044112. PubMed ID: 36035888
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Direct quantitation of peptide-mediated protein transport across a droplet-interface bilayer.
    Huang J; Lein M; Gunderson C; Holden MA
    J Am Chem Soc; 2011 Oct; 133(40):15818-21. PubMed ID: 21838329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.