These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 17764228)

  • 1. Acceleration of Monte Carlo simulations through spatial updating in the grand canonical ensemble.
    Orkoulas G
    J Chem Phys; 2007 Aug; 127(8):084106. PubMed ID: 17764228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial updating grand canonical Monte Carlo algorithms for fluid simulation: generalization to continuous potentials and parallel implementation.
    O'Keeffe CJ; Ren R; Orkoulas G
    J Chem Phys; 2007 Nov; 127(19):194103. PubMed ID: 18035875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel canonical Monte Carlo simulations through sequential updating of particles.
    O'Keeffe CJ; Orkoulas G
    J Chem Phys; 2009 Apr; 130(13):134109. PubMed ID: 19355719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial updating in the great grand canonical ensemble.
    Orkoulas G; Noon DP
    J Chem Phys; 2009 Oct; 131(16):161106. PubMed ID: 19894918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acceleration of Markov chain Monte Carlo simulations through sequential updating.
    Ren R; Orkoulas G
    J Chem Phys; 2006 Feb; 124(6):64109. PubMed ID: 16483198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel Markov chain Monte Carlo simulations.
    Ren R; Orkoulas G
    J Chem Phys; 2007 Jun; 126(21):211102. PubMed ID: 17567181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating prescribed particle densities in the grand canonical ensemble using iterative algorithms.
    Malasics A; Gillespie D; Boda D
    J Chem Phys; 2008 Mar; 128(12):124102. PubMed ID: 18376903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic characterization of fluids confined in heterogeneous pores by monte carlo simulations in the grand canonical and the isobaric-isothermal ensembles.
    Puibasset J
    J Phys Chem B; 2005 Apr; 109(16):8185-94. PubMed ID: 16851957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of inhomogeneous ion diffusion coefficients into kinetic lattice grand canonical monte carlo simulations and application to ion current calculations in a simple model ion channel.
    Hwang H; Schatz GC; Ratner MA
    J Phys Chem A; 2007 Dec; 111(49):12506-12. PubMed ID: 17960920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations.
    Okamoto Y
    J Mol Graph Model; 2004 May; 22(5):425-39. PubMed ID: 15099838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast off-lattice Monte Carlo simulations with "soft" repulsive potentials.
    Wang Q; Yin Y
    J Chem Phys; 2009 Mar; 130(10):104903. PubMed ID: 19292555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models.
    Liu Z; Chan HS
    J Chem Phys; 2008 Apr; 128(14):145104. PubMed ID: 18412482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boltzmann bias grand canonical Monte Carlo.
    Garberoglio G
    J Chem Phys; 2008 Apr; 128(13):134109. PubMed ID: 18397055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system.
    Hansen N; Jakobtorweihen S; Keil FJ
    J Chem Phys; 2005 Apr; 122(16):164705. PubMed ID: 15945697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics and partitioning of homopolymers into a slit-A grand canonical Monte Carlo simulation study.
    Jiang W; Wang Y
    J Chem Phys; 2004 Aug; 121(8):3905-13. PubMed ID: 15303959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Monte Carlo simulation of adsorption of gases on surfaces and in pores: a concept of multibins.
    Fan C; Do DD; Nicholson D
    J Phys Chem B; 2011 Sep; 115(35):10509-17. PubMed ID: 21797285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local structures of fluid with discrete spherical potential: Theory and grand canonical ensemble Monte Carlo simulation.
    Zhou S; Lajovic A; Jamnik A
    J Chem Phys; 2008 Sep; 129(12):124503. PubMed ID: 19045032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase coexistence in heterogeneous porous media: a new extension to Gibbs ensemble Monte Carlo simulation method.
    Puibasset J
    J Chem Phys; 2005 Apr; 122(13):134710. PubMed ID: 15847492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid bridges confined between chemically nanopatterned solid substrates.
    Schoen M
    Phys Chem Chem Phys; 2008 Jan; 10(2):223-56. PubMed ID: 18213411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient multiparticle sampling in Monte Carlo simulations on fluids: application to polarizable models.
    Moucka F; Rouha M; Nezbeda I
    J Chem Phys; 2007 Jun; 126(22):224106. PubMed ID: 17581043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.