These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 17764239)

  • 1. Decoupling of the Dirac equation correct to the third order for the magnetic perturbation.
    Ootani Y; Maeda H; Fukui H
    J Chem Phys; 2007 Aug; 127(8):084117. PubMed ID: 17764239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.
    Manninen P; Ruud K; Lantto P; Vaara J
    J Chem Phys; 2005 Mar; 122(11):114107. PubMed ID: 15836201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. II. Consideration of perturbations in the metric operator.
    Maeda H; Ootani Y; Fukui H
    J Chem Phys; 2007 May; 126(17):174102. PubMed ID: 17492852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic calculation of nuclear magnetic shielding using normalized elimination of the small component.
    Kudo K; Maeda H; Kawakubo T; Ootani Y; Funaki M; Fukui H
    J Chem Phys; 2006 Jun; 124(22):224106. PubMed ID: 16784262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact decoupling of the Dirac Hamiltonian. III. Molecular properties.
    Wolf A; Reiher M
    J Chem Phys; 2006 Feb; 124(6):64102. PubMed ID: 16483191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M
    J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-component relativistic theory for nuclear magnetic shielding constants: the orbital decomposition approach.
    Xiao Y; Peng D; Liu W
    J Chem Phys; 2007 Feb; 126(8):081101. PubMed ID: 17343433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relativistic corrections to electrical first-order properties using direct perturbation theory.
    Stopkowicz S; Gauss J
    J Chem Phys; 2008 Oct; 129(16):164119. PubMed ID: 19045259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH.
    Straka M; Lantto P; Räsänen M; Vaara J
    J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact decoupling of the Dirac Hamiltonian. I. General theory.
    Reiher M; Wolf A
    J Chem Phys; 2004 Aug; 121(5):2037-47. PubMed ID: 15260757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model.
    Hamaya S; Maeda H; Funaki M; Fukui H
    J Chem Phys; 2008 Dec; 129(22):224103. PubMed ID: 19071903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A second-quantization framework for the unified treatment of relativistic and nonrelativistic molecular perturbations by response theory.
    Helgaker T; Hennum AC; Klopper W
    J Chem Phys; 2006 Jul; 125(2):24102. PubMed ID: 16848572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relativistic effects on nuclear magnetic shielding constants in HX and CH3X (X=Br,I) based on the linear response within the elimination of small component approach.
    Melo JI; Ruiz de Azua MC; Giribet CG; Aucar GA; Provasi PF
    J Chem Phys; 2004 Oct; 121(14):6798-808. PubMed ID: 15473737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order.
    Reiher M; Wolf A
    J Chem Phys; 2004 Dec; 121(22):10945-56. PubMed ID: 15634044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll transformations.
    Neese F; Wolf A; Fleig T; Reiher M; Hess BA
    J Chem Phys; 2005 May; 122(20):204107. PubMed ID: 15945713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relativistic electronic structure theory.
    Nakajima T; Yanai T; Hirao K
    J Comput Chem; 2002 Jun; 23(8):847-60. PubMed ID: 12012361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourth-order relativistic corrections to electrical first-order properties using direct perturbation theory.
    Stopkowicz S; Gauss J
    J Chem Phys; 2011 May; 134(20):204106. PubMed ID: 21639423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact decoupling of the Dirac Hamiltonian. IV. Automated evaluation of molecular properties within the Douglas-Kroll-Hess theory up to arbitrary order.
    Wolf A; Reiher M
    J Chem Phys; 2006 Feb; 124(6):64103. PubMed ID: 16483192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.