These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17764251)

  • 1. Midinfrared polarization spectroscopy of OH and hot water in low pressure lean premixed flames.
    Li ZS; Hu C; Zetterberg J; Linvin M; Aldén M
    J Chem Phys; 2007 Aug; 127(8):084310. PubMed ID: 17764251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially resolved trace detection of HCl in flames with mid-infrared polarization spectroscopy.
    Li ZS; Sun ZW; Li B; Aldén M; Försth M
    Opt Lett; 2008 Aug; 33(16):1836-8. PubMed ID: 18709105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-Infrared Polarization Spectroscopy Measurements of Species Concentrations and Temperature in a Low-Pressure Flame.
    Sahlberg AL; Hot D; Lyngbye-Pedersen R; Zhou J; Aldén M; Li Z
    Appl Spectrosc; 2019 Jun; 73(6):653-664. PubMed ID: 30556400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarization spectroscopy applied to the detection of trace constituents in sooting combustion.
    Walewski JW; Nyholm K; Dreizler A; Aldén M
    Appl Spectrosc; 2004 Feb; 58(2):238-42. PubMed ID: 17140484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VCSEL based detection of water vapor near 940nm.
    Cattaneo H; Laurila T; Hernberg R
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Dec; 60(14):3269-75. PubMed ID: 15561608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-shot, planar infrared imaging in flames using polarization spectroscopy.
    Sun Z; Zetterberg J; Alwahabi Z; Aldén M; Li Z
    Opt Express; 2015 Nov; 23(23):30414-20. PubMed ID: 26698520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of OH in flames by using polarization spectroscopy.
    Nyholm K; Maier R; Aminoff CG; Kaivola M
    Appl Opt; 1993 Feb; 32(6):919-24. PubMed ID: 20802767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jet-cooled diode laser spectra of CF3Br in the 9.2 microm region and rovibrational analysis of symmetric CF3 stretching mode.
    Pietropolli Charmet A; Stoppa P; Toninello P; Baldacci A; Giorgianni S
    Phys Chem Chem Phys; 2006 Jun; 8(21):2491-8. PubMed ID: 16721433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature measurements of the hydroxyl radical and molecular nitrogen in premixed, laminar flames by laser techniques.
    Bechtel JH
    Appl Opt; 1979 Jul; 18(13):2100-6. PubMed ID: 20212620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution IR cavity ring-down spectroscopy of jet-cooled free radicals and other species.
    Wu S; Dupré P; Miller TA
    Phys Chem Chem Phys; 2006 Apr; 8(14):1682-9. PubMed ID: 16633652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution infrared spectroscopy of jet-cooled vinyl radical: symmetric CH2 stretch excitation and tunneling dynamics.
    Dong F; Roberts M; Nesbitt DJ
    J Chem Phys; 2008 Jan; 128(4):044305. PubMed ID: 18247947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of OH radicals in a low-power atmospheric inductively coupled plasma by cavity ringdown spectroscopy.
    Wang C; Mazzotti FJ; Koirala SP; Winstead CB; Miller GP
    Appl Spectrosc; 2004 Jun; 58(6):734-40. PubMed ID: 15198827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm(-1): new observations and exhaustive review.
    Campargue A; Barbe A; De Backer-Barilly MR; Tyuterev VG; Kassi S
    Phys Chem Chem Phys; 2008 May; 10(20):2925-46. PubMed ID: 18473041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation.
    Stauffer HU; Kulatilaka WD; Gord JR; Roy S
    Opt Lett; 2011 May; 36(10):1776-8. PubMed ID: 21593887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of flame radicals using light-emitting diodes.
    Schorsch S; Kiefer J; Leipertz A; Li Z; Aldén M
    Appl Spectrosc; 2010 Dec; 64(12):1330-4. PubMed ID: 21144149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of separated flames in analytical flame spectroscopy.
    Kirkbright GF; West TS
    Appl Opt; 1968 Jul; 7(7):1305-11. PubMed ID: 20068791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies.
    Wang J; Chaos M; Yang B; Cool TA; Dryer FL; Kasper T; Hansen N; Osswald P; Kohse-Höinghaus K; Westmoreland PR
    Phys Chem Chem Phys; 2009 Mar; 11(9):1328-39. PubMed ID: 19224033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harmonic analysis of vibrations of morpholine-4-ylmethylthiourea: a DFT, midinfrared and Raman spectral study.
    Ramalingam M; Jaccob M; Swaminathan J; Venuvanalingam P; Sundaraganesan N
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):996-1002. PubMed ID: 18602861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study of laminar lean premixed methylmethacrylate/oxygen/argon flame at low pressure.
    Wang T; Li S; Lin Z; Han D; Han X
    J Phys Chem A; 2008 Feb; 112(6):1219-27. PubMed ID: 18197649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature and Thermal Diffusivity Diagnostics in Laminar Methane Flames Using Infrared Four-Wave Mixing Techniques.
    Song Z; Chao X; Sahlberg AL
    Appl Spectrosc; 2024 May; 78(5):538-550. PubMed ID: 38409815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.