BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17764519)

  • 1. superwoman1-cleistogamy, a hopeful allele for gene containment in GM rice.
    Yoshida H; Itoh J; Ohmori S; Miyoshi K; Horigome A; Uchida E; Kimizu M; Matsumura Y; Kusaba M; Satoh H; Nagato Y
    Plant Biotechnol J; 2007 Nov; 5(6):835-46. PubMed ID: 17764519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The superwoman1-cleistogamy2 mutant is a novel resource for gene containment in rice.
    Lombardo F; Kuroki M; Yao SG; Shimizu H; Ikegaya T; Kimizu M; Ohmori S; Akiyama T; Hayashi T; Yamaguchi T; Koike S; Yatou O; Yoshida H
    Plant Biotechnol J; 2017 Jan; 15(1):97-106. PubMed ID: 27336225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development.
    Yao SG; Ohmori S; Kimizu M; Yoshida H
    Plant Cell Physiol; 2008 May; 49(5):853-7. PubMed ID: 18378529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice.
    Xiao H; Tang J; Li Y; Wang W; Li X; Jin L; Xie R; Luo H; Zhao X; Meng Z; He G; Zhu L
    Plant J; 2009 Sep; 59(5):789-801. PubMed ID: 19453444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice.
    Yun D; Liang W; Dreni L; Yin C; Zhou Z; Kater MM; Zhang D
    Mol Plant; 2013 May; 6(3):743-56. PubMed ID: 23300256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa).
    Cui R; Han J; Zhao S; Su K; Wu F; Du X; Xu Q; Chong K; Theissen G; Meng Z
    Plant J; 2010 Mar; 61(5):767-81. PubMed ID: 20003164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agronomic traits and gene containment capability of cleistogamous rice lines with the superwoman1-cleistogamy mutation.
    Ohmori S; Tabuchi H; Yatou O; Yoshida H
    Breed Sci; 2012 Jun; 62(2):124-32. PubMed ID: 23136523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological, anatomical and genetic analysis for a rice mutant with abnormal hull.
    Zhang Q; Xu J; Li Y; Xu P; Zhang H; Wu X
    J Genet Genomics; 2007 Jun; 34(6):519-26. PubMed ID: 17601611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice open beak is a negative regulator of class 1 knox genes and a positive regulator of class B floral homeotic gene.
    Horigome A; Nagasawa N; Ikeda K; Ito M; Itoh J; Nagato Y
    Plant J; 2009 Jun; 58(5):724-36. PubMed ID: 19207212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cleistogamy of the
    Ohmori S; Koike S; Hayashi T; Yamaguchi T; Kuroki M; Yoshida H
    Breed Sci; 2018 Sep; 68(4):432-441. PubMed ID: 30369817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and identification of a novel mutant fon(t) on floral organ number and floral organ identity in rice.
    Li Y; Xu P; Zhang H; Peng H; Zhang Q; Wang X; Wu X
    J Genet Genomics; 2007 Aug; 34(8):730-7. PubMed ID: 17707217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia.
    Geuten K; Becker A; Kaufmann K; Caris P; Janssens S; Viaene T; Theissen G; Smets E
    Plant J; 2006 Aug; 47(4):501-18. PubMed ID: 16856983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rice ternary MADS protein complexes containing class B MADS heterodimer.
    Seok HY; Park HY; Park JI; Lee YM; Lee SY; An G; Moon YH
    Biochem Biophys Res Commun; 2010 Oct; 401(4):598-604. PubMed ID: 20888318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice.
    Nagasawa N; Miyoshi M; Sano Y; Satoh H; Hirano H; Sakai H; Nagato Y
    Development; 2003 Feb; 130(4):705-18. PubMed ID: 12506001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis.
    Kater MM; Dreni L; Colombo L
    J Exp Bot; 2006; 57(13):3433-44. PubMed ID: 16968881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and gene mapping of a novel mutant supernumerary lodicules (snl) in rice.
    Wang N; Sang XC; Li YF; Yang ZL; Zhao FM; Ling YH; Zhang ZS; He GH
    J Integr Plant Biol; 2010 Mar; 52(3):265-72. PubMed ID: 20377687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.).
    Ni DH; Li J; Duan YB; Yang YC; Wei PC; Xu RF; Li CR; Liang DD; Li H; Song FS; Ni JL; Li L; Yang JB
    J Exp Bot; 2014 May; 65(8):2107-17. PubMed ID: 24619999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Male-sterile and cleistogamous phenotypes in tall fescue induced by chimeric repressors of SUPERWOMAN1 and OsMADS58.
    Sato H; Yoshida K; Mitsuda N; Ohme-Takagi M; Takamizo T
    Plant Sci; 2012 Feb; 183():183-9. PubMed ID: 22195592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ.
    Yadav SR; Prasad K; Vijayraghavan U
    Genetics; 2007 May; 176(1):283-94. PubMed ID: 17409064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice.
    Dreni L; Jacchia S; Fornara F; Fornari M; Ouwerkerk PB; An G; Colombo L; Kater MM
    Plant J; 2007 Nov; 52(4):690-9. PubMed ID: 17877710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.