BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17764653)

  • 1. Arginine methylation of Sam68 and SLM proteins negatively regulates their poly(U) RNA binding activity.
    Rho J; Choi S; Jung CR; Im DS
    Arch Biochem Biophys; 2007 Oct; 466(1):49-57. PubMed ID: 17764653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis.
    Babic I; Cherry E; Fujita DJ
    Oncogene; 2006 Aug; 25(36):4955-64. PubMed ID: 16568089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical and functional interaction between the transcriptional cofactor CBP and the KH domain protein Sam68.
    Hong W; Resnick RJ; Rakowski C; Shalloway D; Taylor SJ; Blobel GA
    Mol Cancer Res; 2002 Nov; 1(1):48-55. PubMed ID: 12496368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1.
    Côté J; Boisvert FM; Boulanger MC; Bedford MT; Richard S
    Mol Biol Cell; 2003 Jan; 14(1):274-87. PubMed ID: 12529443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The association of Sam68 with Vav1 contributes to tumorigenesis.
    Lazer G; Pe'er L; Schapira V; Richard S; Katzav S
    Cell Signal; 2007 Dec; 19(12):2479-86. PubMed ID: 17855053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of proline rich domain of an RNA-binding protein Sam68 in cell growth process, death and B cell signal transduction.
    Li QH; Fan TX; Pang TX; Yuan WS; Han ZC
    Chin Med J (Engl); 2006 Sep; 119(18):1536-42. PubMed ID: 16996007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Sam68-like mammalian proteins SLM-1 and SLM-2: SLM-1 is a Src substrate during mitosis.
    Di Fruscio M; Chen T; Richard S
    Proc Natl Acad Sci U S A; 1999 Mar; 96(6):2710-5. PubMed ID: 10077576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KH domain integrity is required for wild-type localization of Sam68.
    McBride AE; Taylor SJ; Shalloway D; Kirkegaard K
    Exp Cell Res; 1998 May; 241(1):84-95. PubMed ID: 9633516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirement of an additional Sam68 domain for inhibition of human immunodeficiency virus type 1 replication by Sam68 dominant negative mutants lacking the nuclear localization signal.
    Zhang J; Liu Y; Henao J; Rugeles MT; Li J; Chen T; He JJ
    Gene; 2005 Dec; 363():67-76. PubMed ID: 16236470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nuclear tyrosine kinase BRK/Sik phosphorylates and inhibits the RNA-binding activities of the Sam68-like mammalian proteins SLM-1 and SLM-2.
    Haegebarth A; Heap D; Bie W; Derry JJ; Richard S; Tyner AL
    J Biol Chem; 2004 Dec; 279(52):54398-404. PubMed ID: 15471878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of determinants involved in the stimulation of HIV-1 expression by Sam68.
    McLaren M; Cochrane A
    Virology; 2009 Mar; 385(1):93-104. PubMed ID: 19091369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. hCAF1, a new regulator of PRMT1-dependent arginine methylation.
    Robin-Lespinasse Y; Sentis S; Kolytcheff C; Rostan MC; Corbo L; Le Romancer M
    J Cell Sci; 2007 Feb; 120(Pt 4):638-47. PubMed ID: 17264152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells.
    Busà R; Paronetto MP; Farini D; Pierantozzi E; Botti F; Angelini DF; Attisani F; Vespasiani G; Sette C
    Oncogene; 2007 Jun; 26(30):4372-82. PubMed ID: 17237817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sam68 and ERKs regulate leptin-induced expression of OB-Rb mRNA in C2C12 myotubes.
    Maroni P; Citterio L; Piccoletti R; Bendinelli P
    Mol Cell Endocrinol; 2009 Oct; 309(1-2):26-31. PubMed ID: 19524014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sam68 is a Ras-GAP-associated protein in mitosis.
    Guitard E; Barlat I; Maurier F; Schweighoffer F; Tocque B
    Biochem Biophys Res Commun; 1998 Apr; 245(2):562-6. PubMed ID: 9571195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylation of Xilf3 by Xprmt1b alters its DNA, but not RNA, binding activity.
    Cazanove O; Batut J; Scarlett G; Mumford K; Elgar S; Thresh S; Neant I; Moreau M; Guille M
    Biochemistry; 2008 Aug; 47(32):8350-7. PubMed ID: 18636753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine methylation of the cellular nucleic acid binding protein does not affect its subcellular localization but impedes RNA binding.
    Wei HM; Hu HH; Chang GY; Lee YJ; Li YC; Chang HH; Li C
    FEBS Lett; 2014 May; 588(9):1542-8. PubMed ID: 24726729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of arginine methylation in endothelial cells: role in premature senescence and apoptosis.
    Polotskaia A; Wang M; Patschan S; Addabbo F; Chen J; Goligorsky MS
    Cell Cycle; 2007 Oct; 6(20):2524-30. PubMed ID: 17726370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RNA binding protein Sam68 is acetylated in tumor cell lines, and its acetylation correlates with enhanced RNA binding activity.
    Babic I; Jakymiw A; Fujita DJ
    Oncogene; 2004 May; 23(21):3781-9. PubMed ID: 15021911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and structural probing of the N-terminal residues encoded by FMR1 exon 15 and their effect on downstream arginine methylation.
    Dolzhanskaya N; Bolton DC; Denman RB
    Biochemistry; 2008 Aug; 47(33):8491-503. PubMed ID: 18656952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.