BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 17764701)

  • 41. Inter-species comparison of liver and small intestinal microsomal metabolism of fluoranthene.
    Walker SA; Whitten LB; Seals GB; Lee WE; Archibong AE; Ramesh A
    Food Chem Toxicol; 2006 Mar; 44(3):380-7. PubMed ID: 16182425
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro drug metabolism by human carboxylesterase 1: focus on angiotensin-converting enzyme inhibitors.
    Thomsen R; Rasmussen HB; Linnet K;
    Drug Metab Dispos; 2014 Jan; 42(1):126-33. PubMed ID: 24141856
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative study of the hydrolytic metabolism of methyl-, ethyl-, propyl-, butyl-, heptyl- and dodecylparaben by microsomes of various rat and human tissues.
    Ozaki H; Sugihara K; Watanabe Y; Fujino C; Uramaru N; Sone T; Ohta S; Kitamura S
    Xenobiotica; 2013 Dec; 43(12):1064-72. PubMed ID: 23742084
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of carboxylesterase-dependent dabigatran etexilate hydrolysis.
    Laizure SC; Parker RB; Herring VL; Hu ZY
    Drug Metab Dispos; 2014 Feb; 42(2):201-6. PubMed ID: 24212379
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Examination of the carboxylesterase phenotype in human liver.
    Ross MK; Borazjani A; Wang R; Crow JA; Xie S
    Arch Biochem Biophys; 2012 Jun; 522(1):44-56. PubMed ID: 22525521
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differences in Intestinal Hydrolytic Activities between Cynomolgus Monkeys and Humans: Evaluation of Substrate Specificities Using Recombinant Carboxylesterase 2 Isozymes.
    Igawa Y; Fujiwara S; Ohura K; Hirokawa T; Nishizawa Y; Uehara S; Uno Y; Imai T
    Mol Pharm; 2016 Sep; 13(9):3176-86. PubMed ID: 27454346
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Interaction of various dithio- and thiophosphates containing amino acid fragments with carboxylesterase from rat liver].
    Makhaeva GF; Veselova VL; Mastriukova TA; Shipov AE; Zhdanova GV
    Bioorg Khim; 1983 Jul; 9(7):920-5. PubMed ID: 6679786
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of carboxylesterases expressed in rat intestine and effects of their hydrolyzing activity in predicting first-pass metabolism of ester prodrugs.
    Liu D; Gao J; Zhang C; Ren X; Liu Y; Xu Y
    Pharmazie; 2011 Nov; 66(11):888-93. PubMed ID: 22204136
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of esterases involved in the stereoselective hydrolysis of ester-type prodrugs of propranolol in rat liver and plasma.
    Yoshigae Y; Imai T; Taketani M; Otagiri M
    Chirality; 1999; 11(1):10-3. PubMed ID: 9914648
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Different inhibitory effects in rat and human carboxylesterases.
    Takahashi S; Katoh M; Saitoh T; Nakajima M; Yokoi T
    Drug Metab Dispos; 2009 May; 37(5):956-61. PubMed ID: 19225040
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arylacetamide deacetylase is a determinant enzyme for the difference in hydrolase activities of phenacetin and acetaminophen.
    Watanabe A; Fukami T; Takahashi S; Kobayashi Y; Nakagawa N; Nakajima M; Yokoi T
    Drug Metab Dispos; 2010 Sep; 38(9):1532-7. PubMed ID: 20542992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aspirin hydrolysis in human and experimental animal plasma and the effect of metal cations on hydrolase activities.
    Bahar FG; Imai T
    Drug Metab Dispos; 2013 Jul; 41(7):1450-6. PubMed ID: 23649702
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase.
    Shimizu M; Fukami T; Nakajima M; Yokoi T
    Drug Metab Dispos; 2014 Jul; 42(7):1103-9. PubMed ID: 24751575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The COVID-19 Oral Drug Molnupiravir Is a CES2 Substrate: Potential Drug-Drug Interactions and Impact of CES2 Genetic Polymorphism In Vitro.
    Shen Y; Eades W; Liu W; Yan B
    Drug Metab Dispos; 2022 Sep; 50(9):1151-1160. PubMed ID: 35790245
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interspecies variation of clopidogrel hydrolysis in liver microsomes from various mammals.
    Wang YQ; Shang XF; Wang L; Zhang P; Zou LW; Song YQ; Hao DC; Fang SQ; Ge GB; Tang H
    Chem Biol Interact; 2020 Jan; 315():108871. PubMed ID: 31669218
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of intestinal carboxylesterase in the oral absorption of prodrugs.
    Imai T; Ohura K
    Curr Drug Metab; 2010 Nov; 11(9):793-805. PubMed ID: 21189138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Hydrolysis by carboxylesterase and disposition of prodrug with ester moiety].
    Imai T
    Yakugaku Zasshi; 2007 Apr; 127(4):611-9. PubMed ID: 17409690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Age-Dependent Human Hepatic Carboxylesterase 1 (CES1) and Carboxylesterase 2 (CES2) Postnatal Ontogeny.
    Hines RN; Simpson PM; McCarver DG
    Drug Metab Dispos; 2016 Jul; 44(7):959-66. PubMed ID: 26825642
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of alcohol on human carboxylesterase drug metabolism.
    Parker RB; Hu ZY; Meibohm B; Laizure SC
    Clin Pharmacokinet; 2015 Jun; 54(6):627-38. PubMed ID: 25511794
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Involvement of carboxylesterase 1 and 2 in the hydrolysis of mycophenolate mofetil.
    Fujiyama N; Miura M; Kato S; Sone T; Isobe M; Satoh S
    Drug Metab Dispos; 2010 Dec; 38(12):2210-7. PubMed ID: 20823294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.