These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 17765330)

  • 61. Developing velocity sensitivity in a model neuron by local synaptic plasticity.
    Tamosiunaite M; Porr B; Wörgötter F
    Biol Cybern; 2007 May; 96(5):507-18. PubMed ID: 17431665
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Delay-Induced Multistability and Loop Formation in Neuronal Networks with Spike-Timing-Dependent Plasticity.
    Madadi Asl M; Valizadeh A; Tass PA
    Sci Rep; 2018 Aug; 8(1):12068. PubMed ID: 30104713
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Spike-timing-dependent BDNF secretion and synaptic plasticity.
    Lu H; Park H; Poo MM
    Philos Trans R Soc Lond B Biol Sci; 2014 Jan; 369(1633):20130132. PubMed ID: 24298135
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Messages in spike timing-dependent plasticity: pros and cons.
    Ishikawa D; Ikegaya Y
    Chin J Physiol; 2010 Dec; 53(6):359-63. PubMed ID: 21793347
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synaptic plasticity rules with physiological calcium levels.
    Inglebert Y; Aljadeff J; Brunel N; Debanne D
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33639-33648. PubMed ID: 33328274
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Pre- and postsynaptically expressed spike-timing-dependent plasticity contribute differentially to neuronal learning.
    Mizusaki BEP; Li SSY; Costa RP; Sjöström PJ
    PLoS Comput Biol; 2022 Jun; 18(6):e1009409. PubMed ID: 35700188
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The effect of STDP temporal kernel structure on the learning dynamics of single excitatory and inhibitory synapses.
    Luz Y; Shamir M
    PLoS One; 2014; 9(7):e101109. PubMed ID: 24999634
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multicontact Co-operativity in Spike-Timing-Dependent Structural Plasticity Stabilizes Networks.
    Deger M; Seeholzer A; Gerstner W
    Cereb Cortex; 2018 Apr; 28(4):1396-1415. PubMed ID: 29300903
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Spike timing-dependent plasticity induces non-trivial topology in the brain.
    Borges RR; Borges FS; Lameu EL; Batista AM; Iarosz KC; Caldas IL; Antonopoulos CG; Baptista MS
    Neural Netw; 2017 Apr; 88():58-64. PubMed ID: 28189840
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Human synapses show a wide temporal window for spike-timing-dependent plasticity.
    Testa-Silva G; Verhoog MB; Goriounova NA; Loebel A; Hjorth J; Baayen JC; de Kock CP; Mansvelder HD
    Front Synaptic Neurosci; 2010; 2():12. PubMed ID: 21423498
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Presynaptic ionotropic receptors controlling and modulating the rules for spike timing-dependent plasticity.
    Verhoog MB; Mansvelder HD
    Neural Plast; 2011; 2011():870763. PubMed ID: 21941664
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stability of negative-image equilibria in spike-timing-dependent plasticity.
    Williams A; Roberts PD; Leen TK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021923. PubMed ID: 14525022
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
    Olde Scheper TV; Meredith RM; Mansvelder HD; van Pelt J; van Ooyen A
    Front Comput Neurosci; 2017; 11():119. PubMed ID: 29375358
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Spike timing-dependent plasticity as the origin of the formation of clustered synaptic efficacy engrams.
    Iannella NL; Launey T; Tanaka S
    Front Comput Neurosci; 2010; 4():. PubMed ID: 20725522
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bursts shape the NMDA-R mediated spike timing dependent plasticity curve: role of burst interspike interval and GABAergic inhibition.
    Cutsuridis V
    Cogn Neurodyn; 2012 Oct; 6(5):421-41. PubMed ID: 24082963
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites.
    Schiess M; Urbanczik R; Senn W
    PLoS Comput Biol; 2016 Feb; 12(2):e1004638. PubMed ID: 26841235
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Spike timing, calcium signals and synaptic plasticity.
    Sjöström PJ; Nelson SB
    Curr Opin Neurobiol; 2002 Jun; 12(3):305-14. PubMed ID: 12049938
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multiprotocol-induced plasticity in artificial synapses.
    Kornijcuk V; Kavehei O; Lim H; Seok JY; Kim SK; Kim I; Lee WS; Choi BJ; Jeong DS
    Nanoscale; 2014 Dec; 6(24):15151-60. PubMed ID: 25373422
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Conditional modulation of spike-timing-dependent plasticity for olfactory learning.
    Cassenaer S; Laurent G
    Nature; 2012 Jan; 482(7383):47-52. PubMed ID: 22278062
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pairwise analysis can account for network structures arising from spike-timing dependent plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2013; 9(2):e1002906. PubMed ID: 23436986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.