These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 17765603)
1. Absorption spectroscopic and FTIR studies on EDA complexes between TNT (2,4,6-trinitrotoluene) with amines in DMSO and determination of the vertical electron affinity of TNT. Sharma SP; Lahiri SC Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):144-53. PubMed ID: 17765603 [TBL] [Abstract][Full Text] [Related]
2. Spectrophotometric studies on the thermodynamic properties of charge-transfer complexes between m-DNB (1,3-dinitrobenzene) with aliphatic amines in DMSO and determination of the vertical electron affinity of m-DNB. Sharma K; Lahiri SC Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1063-70. PubMed ID: 21640639 [TBL] [Abstract][Full Text] [Related]
3. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Tu R; Liu B; Wang Z; Gao D; Wang F; Fang Q; Zhang Z Anal Chem; 2008 May; 80(9):3458-65. PubMed ID: 18336012 [TBL] [Abstract][Full Text] [Related]
4. Electrochemiluminescence detection of TNT by resonance energy transfer through the formation of a TNT-amine complex. Qi W; Xu M; Pang L; Liu Z; Zhang W; Majeed S; Xu G Chemistry; 2014 Apr; 20(16):4829-35. PubMed ID: 24596312 [TBL] [Abstract][Full Text] [Related]
6. [Studies on nano-diamond prepared by explosive detonation by Raman and infrared spectroscopy]. Wen C; Jin ZH; Liu XX; Li X; Guan JQ; Sun DY; Lin YR; Tang SY; Zhou G; Lin JD Guang Pu Xue Yu Guang Pu Fen Xi; 2005 May; 25(5):681-4. PubMed ID: 16128062 [TBL] [Abstract][Full Text] [Related]
7. Ultrasensitive optical detection of trinitrotoluene by ethylenediamine-capped gold nanoparticles. Lin D; Liu H; Qian K; Zhou X; Yang L; Liu J Anal Chim Acta; 2012 Sep; 744():92-8. PubMed ID: 22935379 [TBL] [Abstract][Full Text] [Related]
8. Early events in 2,4,6-trinitrotoluene (TNT) degradation by porphyrins: binding of TNT to porphyrin by hydrophobic and hydrogen bonds. Hikal WM; Harmon HJ J Hazard Mater; 2008 Jun; 154(1-3):826-31. PubMed ID: 18063299 [TBL] [Abstract][Full Text] [Related]
9. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines. Sheaff CN; Eastwood D; Wai CM Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719 [TBL] [Abstract][Full Text] [Related]
10. Absorbance change and static quenching of fluorescence of meso-tetra(4-sulfonatophenyl)porphyrin (TPPS) by trinitrotoluene (TNT). Rahman M; Harmon HJ Spectrochim Acta A Mol Biomol Spectrosc; 2006 Nov; 65(3-4):901-6. PubMed ID: 16678476 [TBL] [Abstract][Full Text] [Related]
11. Photo-fragmentation cross-section of gaseous 2,4,6-trinitrotoluene at different ultraviolet wavelengths. Sharma RC; Miller TS; Usachev AD; Singh JP; Yueh FY; Monts DL Spectrochim Acta A Mol Biomol Spectrosc; 2009 Apr; 72(3):470-3. PubMed ID: 19070537 [TBL] [Abstract][Full Text] [Related]
12. TNT removal from culture media by three commonly available wild plants growing in the Caribbean. Correa-Torres SN; Pacheco-Londoño LC; Espinosa-Fuentes EA; Rodríguez L; Souto-Bachiller FA; Hernández-Rivera SP J Environ Monit; 2012 Jan; 14(1):30-3. PubMed ID: 22113701 [TBL] [Abstract][Full Text] [Related]
13. Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection. Wang J Anal Biochem; 2018 Jun; 550():49-53. PubMed ID: 29655769 [TBL] [Abstract][Full Text] [Related]
14. Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. Cizek K; Prior C; Thammakhet C; Galik M; Linker K; Tsui R; Cagan A; Wake J; La Belle J; Wang J Anal Chim Acta; 2010 Feb; 661(1):117-21. PubMed ID: 20113724 [TBL] [Abstract][Full Text] [Related]
15. Transformation and mineralization of 2,4,6-trinitrotoluene by the white rot fungus Irpex lacteus. Kim HY; Song HG Appl Microbiol Biotechnol; 2003 Apr; 61(2):150-6. PubMed ID: 12655457 [TBL] [Abstract][Full Text] [Related]
16. TNT detection using multiplexed liquid array displacement immunoassays. Anderson GP; Moreira SC; Charles PT; Medintz IL; Goldman ER; Zeinali M; Taitt CR Anal Chem; 2006 Apr; 78(7):2279-85. PubMed ID: 16579609 [TBL] [Abstract][Full Text] [Related]
17. High uptake of 2,4,6-trinitrotoluene by vetiver grass--potential for phytoremediation? Makris KC; Shakya KM; Datta R; Sarkar D; Pachanoor D Environ Pollut; 2007 Mar; 146(1):1-4. PubMed ID: 16899329 [TBL] [Abstract][Full Text] [Related]
18. Short term exposure to elevated trinitrotoluene concentrations induced structural and functional changes in the soil bacterial community. Travis ER; Bruce NC; Rosser SJ Environ Pollut; 2008 May; 153(2):432-9. PubMed ID: 17935846 [TBL] [Abstract][Full Text] [Related]
19. Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing. Tang L; Feng H; Cheng J; Li J Chem Commun (Camb); 2010 Aug; 46(32):5882-4. PubMed ID: 20625606 [TBL] [Abstract][Full Text] [Related]
20. Selective spectrophotometric determination of TNT using a dicyclohexylamine-based colorimetric sensor. Erçağ E; Uzer A; Apak R Talanta; 2009 May; 78(3):772-80. PubMed ID: 19269427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]