These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 17765949)
1. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Koutsaftis A; Aoyama I Sci Total Environ; 2007 Nov; 387(1-3):166-74. PubMed ID: 17765949 [TBL] [Abstract][Full Text] [Related]
2. The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Koutsaftis A; Aoyama I Environ Toxicol; 2006 Aug; 21(4):432-9. PubMed ID: 16841316 [TBL] [Abstract][Full Text] [Related]
3. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae. Jung SM; Bae JS; Kang SG; Son JS; Jeon JH; Lee HJ; Jeon JY; Sidharthan M; Ryu SH; Shin HW Mar Pollut Bull; 2017 Nov; 124(2):811-818. PubMed ID: 27919420 [TBL] [Abstract][Full Text] [Related]
4. Prediction and assessment of mixture toxicity of compounds in antifouling paints using the sea-urchin embryo-larval bioassay. Bellas J Aquat Toxicol; 2008 Jul; 88(4):308-15. PubMed ID: 18586336 [TBL] [Abstract][Full Text] [Related]
5. Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus. Gutner-Hoch E; Martins R; Maia F; Oliveira T; Shpigel M; Weis M; Tedim J; Benayahu Y Environ Pollut; 2019 Aug; 251():530-537. PubMed ID: 31108285 [TBL] [Abstract][Full Text] [Related]
6. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Bao VW; Leung KM; Qiu JW; Lam MH Mar Pollut Bull; 2011 May; 62(5):1147-51. PubMed ID: 21420693 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays. Gatidou G; Thomaidis NS Aquat Toxicol; 2007 Dec; 85(3):184-91. PubMed ID: 17942164 [TBL] [Abstract][Full Text] [Related]
8. Toxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test. Wang H; Li Y; Huang H; Xu X; Wang Y Environ Toxicol Chem; 2011 Mar; 30(3):692-703. PubMed ID: 21154844 [TBL] [Abstract][Full Text] [Related]
9. Toxicity of Diuron and copper pyrithione on the brine shrimp, Artemia franciscana: the effects of temperature and salinity. Koutsaftis A; Aoyama I J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Dec; 43(14):1581-5. PubMed ID: 18988093 [TBL] [Abstract][Full Text] [Related]
10. Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria. Bao VW; Leung KM; Kwok KW; Zhang AQ; Lui GC Mar Pollut Bull; 2008; 57(6-12):616-23. PubMed ID: 18495176 [TBL] [Abstract][Full Text] [Related]
11. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Barata C; Baird DJ; Nogueira AJ; Soares AM; Riva MC Aquat Toxicol; 2006 Jun; 78(1):1-14. PubMed ID: 16510198 [TBL] [Abstract][Full Text] [Related]
12. Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans. Sánchez-Bayo F; Goka K Aquat Toxicol; 2006 Jun; 78(3):262-71. PubMed ID: 16690142 [TBL] [Abstract][Full Text] [Related]
13. The influence of seawater properties on toxicity of copper pyrithione and its degradation product to brine shrimp Artemia salina. Lavtizar V; Kimura D; Asaoka S; Okamura H Ecotoxicol Environ Saf; 2018 Jan; 147():132-138. PubMed ID: 28841528 [TBL] [Abstract][Full Text] [Related]
14. Indirect estimation of degradation time for zinc pyrithione and copper pyrithione in seawater. Maraldo K; Dahllöf I Mar Pollut Bull; 2004 May; 48(9-10):894-901. PubMed ID: 15111036 [TBL] [Abstract][Full Text] [Related]
15. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus. Bao VW; Lui GC; Leung KM Aquat Toxicol; 2014 Dec; 157():81-93. PubMed ID: 25456222 [TBL] [Abstract][Full Text] [Related]
16. A new simple method with high precision for determining the toxicity of antifouling paints on brine shrimp larvae (Artemia): first results. Castritsi-Catharios J; Bourdaniotis N; Persoone G Chemosphere; 2007 Apr; 67(6):1127-32. PubMed ID: 17217989 [TBL] [Abstract][Full Text] [Related]
17. Seasonal variations in the effect of zinc pyrithione and copper pyrithione on pelagic phytoplankton communities. Maraldo K; Dahllöf I Aquat Toxicol; 2004 Aug; 69(2):189-98. PubMed ID: 15261454 [TBL] [Abstract][Full Text] [Related]
18. Effects of copper, cadmium, and zinc on the hatching success of brine shrimp (Artemia franciscana). Brix KV; Gerdes RM; Adams WJ; Grosell M Arch Environ Contam Toxicol; 2006 Nov; 51(4):580-3. PubMed ID: 16897274 [TBL] [Abstract][Full Text] [Related]
19. Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater. Onduka T; Mochida K; Harino H; Ito K; Kakuno A; Fujii K Arch Environ Contam Toxicol; 2010 May; 58(4):991-7. PubMed ID: 19967345 [TBL] [Abstract][Full Text] [Related]
20. Effects of antifouling biocides to the germination and growth of the marine macroalga, Hormosira banksii (Turner) Desicaine. Myers JH; Gunthorpe L; Allinson G; Duda S Mar Pollut Bull; 2006 Sep; 52(9):1048-55. PubMed ID: 16540127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]