BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17766003)

  • 1. Mitochondrial alternative pathway is associated with development of freezing tolerance in common wheat.
    Mizuno N; Sugie A; Kobayashi F; Takumi S
    J Plant Physiol; 2008 Mar; 165(4):462-7. PubMed ID: 17766003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Line differences in Cor/Lea and fructan biosynthesis-related gene transcript accumulation are related to distinct freezing tolerance levels in synthetic wheat hexaploids.
    Yokota H; Iehisa JC; Shimosaka E; Takumi S
    J Plant Physiol; 2015 Mar; 176():78-88. PubMed ID: 25577733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of a cold-responsive Lt-Cor gene and development of freezing tolerance during cold acclimation in wheat (Triticum aestivum L.).
    Ohno R; Takumi S; Nakamura C
    J Exp Bot; 2001 Dec; 52(365):2367-74. PubMed ID: 11709586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings.
    Grabelnych OI; Borovik OA; Tauson EL; Pobezhimova TP; Katyshev AI; Pavlovskaya NS; Koroleva NA; Lyubushkina IV; Bashmakov VY; Popov VN; Borovskii GB; Voinikov VK
    Biochemistry (Mosc); 2014 Jun; 79(6):506-19. PubMed ID: 25100008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light regulation of mitochondrial alternative oxidase pathway during greening of etiolated wheat seedlings.
    Garmash EV; Grabelnych OI; Velegzhaninov IO; Borovik OA; Dalke IV; Voinikov VK; Golovko TK
    J Plant Physiol; 2015 Feb; 174():75-84. PubMed ID: 25462970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat.
    Monroy AF; Dryanova A; Malette B; Oren DH; Ridha Farajalla M; Liu W; Danyluk J; Ubayasena LW; Kane K; Scoles GJ; Sarhan F; Gulick PJ
    Plant Mol Biol; 2007 Jul; 64(4):409-23. PubMed ID: 17437064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased freezing tolerance in an ABA-hypersensitive mutant of common wheat.
    Kobayashi F; Takumi S; Nakamura C
    J Plant Physiol; 2008 Feb; 165(2):224-32. PubMed ID: 17240477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance.
    Xu J; Li Y; Sun J; Du L; Zhang Y; Yu Q; Liu X
    Plant Biol (Stuttg); 2013 Mar; 15(2):292-303. PubMed ID: 22963252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling of mitochondrial transcriptome in germinating wheat embryos and seedlings subjected to cold, salinity and osmotic stresses.
    Naydenov NG; Khanam S; Siniauskaya M; Nakamura C
    Genes Genet Syst; 2010 Feb; 85(1):31-42. PubMed ID: 20410663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression profiles of respiratory components associated with mitochondrial biogenesis during germination and seedling growth under normal and restricted conditions in wheat.
    Naydenov NG; Khanam SM; Atanassov A; Nakamura C
    Genes Genet Syst; 2008 Feb; 83(1):31-41. PubMed ID: 18379132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of respiration capacity and transcript accumulation level of alternative oxidase genes in necrosis lines of common wheat.
    Sugie A; Murai K; Takumi S
    Genes Genet Syst; 2007 Jun; 82(3):231-9. PubMed ID: 17660693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance.
    Kume S; Kobayashi F; Ishibashi M; Ohno R; Nakamura C; Takumi S
    Genes Genet Syst; 2005 Jun; 80(3):185-97. PubMed ID: 16172531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat.
    Kobayashi F; Maeta E; Terashima A; Kawaura K; Ogihara Y; Takumi S
    J Exp Bot; 2008; 59(4):891-905. PubMed ID: 18326864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel LEA protein involved in freezing tolerance in wheat.
    Sasaki K; Christov NK; Tsuda S; Imai R
    Plant Cell Physiol; 2014 Jan; 55(1):136-47. PubMed ID: 24265272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of cyclical light/dark-regulated expression of freezing tolerance in young winter wheat plants.
    Skinner DZ; Bellinger B; Hiscox W; Helms GL
    PLoS One; 2018; 13(6):e0198042. PubMed ID: 29912979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative oxidase regulation in roots of Vigna unguiculata cultivars differing in drought/salt tolerance.
    Costa JH; Jolivet Y; Hasenfratz-Sauder MP; Orellano EG; da Guia Silva Lima M; Dizengremel P; Fernandes de Melo D
    J Plant Physiol; 2007 Jun; 164(6):718-27. PubMed ID: 16716451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of seasonal expression levels of wheat fructan exohydrolase (FEH) genes regulating fructan metabolism involved in wintering ability.
    Meguro-Maoka A; Yoshida M
    J Plant Physiol; 2016 Feb; 191():54-62. PubMed ID: 26717012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of a wheat actin-depolymerizing factor during cold acclimation.
    Ouellet F; Carpentier E; Cope MJ; Monroy AF; Sarhan F
    Plant Physiol; 2001 Jan; 125(1):360-8. PubMed ID: 11154343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial alternative cyanide-resistant oxidase is involved in an increase of heat stress tolerance in spring wheat.
    Borovik OA; Grabelnych OI
    J Plant Physiol; 2018 Dec; 231():310-317. PubMed ID: 30368229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintenance of growth rate at low temperature in rice and wheat cultivars with a high degree of respiratory homeostasis is associated with a high efficiency of respiratory ATP production.
    Kurimoto K; Millar AH; Lambers H; Day DA; Noguchi K
    Plant Cell Physiol; 2004 Aug; 45(8):1015-22. PubMed ID: 15356327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.