These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 17766262)

  • 21. A biokinetic model for carbon dioxide and bicarbonate.
    Leggett RW
    Radiat Prot Dosimetry; 2004; 108(3):203-13. PubMed ID: 15031442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early blood plutonium retention in nonhuman primates compared to the NCRP 156 wound biokinetic model.
    Konzen K; Brey R; Guilmette R
    Health Phys; 2015 Mar; 108(3):383-7. PubMed ID: 25627953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biokinetic models for the behaviour of carbon-14 from labelled compounds in the human body: can a single generic model be justified?
    Taylor DM
    Radiat Prot Dosimetry; 2004; 108(3):187-202. PubMed ID: 15031441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uncertainty analysis of doses from inhalation of depleted uranium.
    Puncher M; Bailey MR; Harrison JD
    Health Phys; 2008 Sep; 95(3):300-9. PubMed ID: 18695411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Some elements for a revision of the americium reference biokinetic model.
    Blanchardon E; Leggett RW; Eckerman KF
    Radiat Prot Dosimetry; 2007; 127(1-4):131-5. PubMed ID: 17561524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of observed body retention of uranium in natural condition in an average Indian adult with the values predicted by the ICRP biokinetic model.
    Singh IS; Jaiswal DD; Nair S; Vijayagopal P; Bhati S; Garg SP
    Radiat Prot Dosimetry; 2008; 131(4):425-30. PubMed ID: 18801754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of contributors to radiation dose following intakes of rapidly excreted [14C]-compounds.
    Taylor DM
    Radiat Prot Dosimetry; 2007; 127(1-4):440-3. PubMed ID: 17553859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A generic biokinetic model for Carbon-14.
    Manger RP
    Radiat Prot Dosimetry; 2011 Jan; 143(1):42-51. PubMed ID: 21075764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating Plutonium Intake and Radiation Dose Following Extensive Chelation Treatment.
    Dumit S; Avtandilashvili M; Tolmachev SY
    Health Phys; 2019 Aug; 117(2):156-167. PubMed ID: 29750674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiology-based modelling in radiation research: the biokinetics of plutonium.
    Schimmelpfeng J
    Radiat Prot Dosimetry; 2009 Sep; 136(2):74-81. PubMed ID: 19689951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plutonium-DTPA Model Application with USTUR Case 0269.
    Konzen K; Brey R; Miller S
    Health Phys; 2016 Jan; 110(1):59-65. PubMed ID: 26606066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ANALYSIS OF URINARY EXCRETION DATA FROM THREE PLUTONIUM-CONTAMINATED WOUNDS AT LOS ALAMOS NATIONAL LABORATORY.
    Poudel D; Klumpp JA; Waters TL; Bertelli L
    Radiat Prot Dosimetry; 2018 Jan; 178(2):170-178. PubMed ID: 28985423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasma clearance and urinary excretion after intravenous injection of stable 84Sr in humans.
    Höllriegl V; Li WB; Greiter M; Oeh U
    Radiat Prot Dosimetry; 2007; 127(1-4):144-7. PubMed ID: 17556344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A BRIEF OVERVIEW OF COMPARTMENTAL MODELING FOR INTAKE OF PLUTONIUM VIA WOUNDS.
    Poudel D; Klumpp JA; Waters TL; Bertelli L; Guilmette RA
    Radiat Prot Dosimetry; 2018 Jan; 178(1):29-36. PubMed ID: 28591856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of NCRP 156 Wound Model and ICRP 67 Systemic Plutonium Model for Analysis of Urine Data from Simulated Wounds in Nonhuman Primates.
    Poudel D; Guilmette RA; Konzen K; Krage ES; Brey RR
    Health Phys; 2016 Jul; 111(1):58-63. PubMed ID: 27218296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simplified structure of a new model to describe urinary excretion of plutonium after systemic, liver or pulmonary contamination of rats associated with Ca-DTPA treatments.
    Fritsch P; Sérandour AL; Grémy O; Phan G; Tsapis N; Abram MC; Renault D; Fattal E; Benech H; Deverre JR; Poncy JL
    Radiat Res; 2009 Jun; 171(6):674-86. PubMed ID: 19580474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating uncertainty on internal dose assessments.
    Puncher M; Birchall A
    Radiat Prot Dosimetry; 2007; 127(1-4):544-7. PubMed ID: 17993651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implementation of the NCRP wound model for interpretation of bioassay data for intake of radionuclides through contaminated wounds.
    Ishigure N
    J Radiat Res; 2009 May; 50(3):267-76. PubMed ID: 19531925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modifying effects of health status, physiological, and dosimetric factors on extrapulmonary organ distribution and excretion of inhaled plutonium in workers at the Mayak Production Association.
    Suslova KG; Khokhryakov VF; Tokarskaya ZB; Nifatov AP; Sokolova AB; Miller SC; Krahenbuhl MP
    Health Phys; 2006 Apr; 90(4):299-311. PubMed ID: 16538136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface-seeking radionuclides in the skeleton: current approach and recent developments in biokinetic modelling for humans and beagles.
    Luciani A; Polig E
    Radiat Prot Dosimetry; 2007; 127(1-4):140-3. PubMed ID: 17562648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.